RESUMO
GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.
Assuntos
Glutaminase , Glutamina , Apoptose , Asparagina/genética , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Espécies Reativas de OxigênioRESUMO
Porous organic polymers (POPs) have attracted increasing attention and emerged as a new research area in polymer chemistry. During the past decade, the intense desirability for application in aqueous scenarios has spawned the development of a specific class of POPs, i.e., water-soluble or dispersible porous organic polymers (WS-POPs) that can allow the implementation of porosity-based functions in aqueous media. In this Tutorial Review, aiming at providing a practical guide to this area, we will discuss recent advances in the preparation of WS-POPs through covalent/dynamic covalent, coordination and supramolecular approaches. As a result of their intrinsic and well-defined porosity, diverse topological architectures as well as unique water-processable features, many water-soluble/dispersible POPs have been demonstrated to exhibit potential for various applications, which include drug, DNA and protein delivery, bioimaging, photocatalysis, explosive detection and membrane separation. We will also highlight the related function of the representative structures. Finally, we provide our perspective for the future research, with a focus on the development of new structures and biofunctions.
Assuntos
Preparações Farmacêuticas , Polímeros , Porosidade , ÁguaRESUMO
Liquidambar formosana is important for its ornamental value in China; it is increasingly used for landscaping and gardening trees due to its diverse leaf colors and seasonal changes. Varieties including either a fixed leaf color, the purplish 'Fuluzifeng' (ZF), or seasonal changes in leaf color, the reddish 'Nanlinhong' (NLH) have been bred and registered as new plant varieties under the International Union for the Protection of New Plant Varieties (UPOV) system. To gain practical insights into the anthocyanin biosynthetic process, transcriptome sequencing (Illumina) was performed to clarify the metabolic pathways present in the three seasonal changes in leaf colors in NLH and in the springtime purple-red color of ZF. qRT-PCR was used to verify the speculation. Based on the differentially expressed genes and flavonoids analyses, the spring, summer, and autumn leaves of NLH were compared to study the seasonal differences. NLH and ZF were compared to study the formation mechanism of the two leaf colors in spring. Transcriptome sequencing produced a total of 121,216 unigenes from all samples, where 48 unigenes were differentially expressed and associated with the anthocyanidin pathway. The expression levels of LfDFR and LfANS genes corresponded to the accumulation of concentrations of cyanidins in spring (NLHC) and autumn leaves (NLHQ), respectively, with different shades of red. Moreover, the LfF3'5'H gene corresponded to the accumulation of flavonols and delphinidins in purple-red leaves (ZFC). Cyanidin and peonidin were the key pigments in red and dark-red leaves, and purple-red leaves were co-pigmented by cyanidins, pelargonidins, and delphinidins.
RESUMO
Selective preparation of two-dimensional polymers (2DPs) and supramolecular polymers (2DSPs) with defined thickness is crucially important for controlling and maximizing their functions, yet it has remained as a synthetic challenge. In the past decade, several approaches have been developed to allow selective preparation of discrete monolayer 2DPs and 2DSPs. Recently, crystal exfoliation and self-assembly strategies have been employed to successfully prepare bilayer 2DP and 2DSP, which represent the first step towards the controlled "growth" of 2D polymers from the thinnest monolayers to thicker few-layers along the third dimension. This Concept review discusses the concept of accurate synthesis of 2D polymers with defined layers. Advances in this research area will pave the way to rational synthetic strategies for 2D polymers with controlled thickness.
Assuntos
Polímeros , Polímeros/químicaRESUMO
BACKGROUND: Liriodendron chinense ranges widely in subtropical China and northern Vietnam; however, it inhabits several small, isolated populations and is now an endangered species due to its limited seed production. The objective of this study was to develop a set of nuclear SSR (simple sequence repeats) and multiple chloroplast genome markers for genetic studies in L. chinense and their characterization in diverse germplasm. RESULTS: We performed low-coverage whole genome sequencing of the L. chinense from four genotypes, assembled the chloroplast genome and identified nuclear SSR loci by searching in contigs for SSR motifs. Comparative analysis of the four chloroplast genomes of L. chinense revealed 45 SNPs, 17 indels, 49 polymorphic SSR loci, and five small inversions. Most chloroplast intraspecific polymorphisms were located in the interspaces of single-copy regions. In total, 6147 SSR markers were isolated from low-coverage whole genome sequences. The most common SSR motifs were dinucleotide (70.09%), followed by trinucleotide motifs (23.10%). The motif AG/TC (33.51%) was the most abundant, followed by TC/AG (25.53%). A set of 13 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 109 L. chinense individuals, representing distinct varieties or germplasm. The number of alleles per locus ranged from 8 to 28 with an average of 21 alleles. The expected heterozygosity (He) varied from 0.19 to 0.93 and the observed heterozygosity (Ho) ranged from 0.11 to 0.79. CONCLUSIONS: The genetic resources characterized and tested in this study provide a valuable tool to detect polymorphisms in L. chinense for future genetic studies and breeding programs.
Assuntos
Genoma de Cloroplastos/genética , Genoma de Planta/genética , Liriodendron/genética , Polimorfismo Genético/genética , Alelos , Primers do DNA/genética , DNA de Plantas/genética , Genótipo , Repetições de Microssatélites , Sequenciamento Completo do GenomaRESUMO
Resistance to apoptosis and uncontrolled proliferation are two hallmarks of cancer cells. p53 is crucial for apoptosis triggered by a broad range of stresses and a well-known gatekeeper for neoplastic transformation. Here we show that oncogenic IDH1 R132H/R132Q mutants robustly inhibit p53 expression and such an effect is attributed to 2-HG production. Mechanistically, 2-hydroxyglutarate (2-HG) stabilizes hypoxia-inducible factor-2α, which in turn activates the expression of miR-380-5p, a characterized microRNA against p53 expression. Rescue expression of p53 can inhibit the proliferation rate and impair the resistance of apoptosis induced by doxorubicin in IDH1 R132Q mouse embryonic fibroblast cells. Furthermore, p53 protein levels correlates negatively with IDH1 R132H levels in human glioma samples. Our results thus shed a new light on how p53 is down-regulated by 2-HG and suggests that impairment of p53-mediated apoptosis contributes to the tumorigenesis driven by IDH1 mutants.
Assuntos
Arginina/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Isocitrato Desidrogenase/metabolismo , Mutação , Proteína Supressora de Tumor p53/metabolismo , Animais , Arginina/química , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese , Proliferação de Células , Glioma/genética , Glioma/metabolismo , Glutaratos/farmacologia , Humanos , Isocitrato Desidrogenase/genética , Camundongos , MicroRNAs/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A series of cage penta-arylated carboranes have been synthesized by palladium-catalyzed intermolecular coupling of the C-carboxylic acid of the monocarba- closo-dodecaborate anion [CB11H12]- with iodoarenes by direct cage B-H bond functionalization. These transformations set a record in terms of one-pot directing group-mediated activation of inert bonds in a single molecule. The methodology is characterized by high yields, good functional group tolerance, and complete cage regioselectivity. The directing group COOH can be easily removed during or after the intermolecular coupling reaction. The mechanistic pathways were probed using density functional theory calculations. A Pd(II)-Pd(IV)-Pd(II) catalytic cycle is proposed, in which initial coupling is followed by preferred B-H activation of the adjacent boron vertex, and continuation of this selectivity results in a continuous walking process of the palladium center. The methodology opens a new avenue toward building blocks with 5-fold symmetry.
RESUMO
An iridium-catalyzed alkenylation/annulation sequence between monocarba-closo-dodecaborate carboxylic acids and diarylacetylenes is reported. Regioselective activation of the B2 position, followed by B-C bond formation and ring closure, affords 3D bora-analogues of isocoumarins. The reaction tolerates a variety of functional groups on the aromatic rings and can be extended to B12-substituted derivatives. Furthermore, subsequent alkenylation of the B4 vertex has been achieved in high yields.
RESUMO
The closo-dodecaborate dianion is a fundamental icosahedral boron cage with 12 identical B-H vertices. The chemistry and applications of boron clusters have inspired researchers ever since their discovery several decades ago, and the selective modification of the cage positions has remained a major synthetic challenge. A rhodium(III)-catalyzed B-H functionalization-cyclization cascade of closo-dodecaborate amides is reported. The transformations occur chemoselectively at B-H positions in the presence of C-H bonds prone to competitive cyclometalation. Previously inaccessible cage derivatives with B-C(sp2 ) and B-C(sp3 ) bonds as well as a fused diboraoxazole ring are obtained in a one-pot process. The reactions proceed under mild conditions and exhibit complete cage regioselectivity with broad functional group tolerance. These cluster derivatives enable a largely extended investigation of the application of anionic boron clusters in research areas such as photoluminescent materials and medicinal chemistry.
RESUMO
OBJECTIVE: This study examined the differences in 14-year outcomes of persons with schizophrenia with and without family caregiver(s) in a rural community in China. METHODS: All participants with schizophrenia (n = 510) aged 15 years and older were identified in a 1994 epidemiological investigation of 123,572 people and followed up in 2004 and 2008 in Xinjin County, Chengdu, China. RESULTS: Individuals without family caregiver in 1994 had significantly higher rate of homelessness (23.8 %) and lower rate of survival (47.5 %) in 2008 than those with family caregivers (5.1 and 70.9 %). Compared with individuals with family caregivers, those without family caregivers were more likely to be male, live alone, have fewer family members, lower family economic status, lower rates of marriage and complete remission, higher mean scores on PANSS and lower mean score on GAF in 2008. The predictors of participants without family caregiver in 2008 included having a small number of family members at baseline and being male. CONCLUSIONS: The absence of a family caregiver is a predictive factor of poorer long-term outcome of persons with schizophrenia in the rural community. The critical role of family caregiving should be incorporated in the planning and delivering of mental health policies and community-based mental health services.
Assuntos
Cuidadores/estatística & dados numéricos , População Rural , Esquizofrenia/epidemiologia , Adulto , Idoso , China/epidemiologia , Feminino , Seguimentos , Pessoas Mal Alojadas/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , População Rural/estatística & dados numéricos , Fatores Socioeconômicos , Análise de SobrevidaRESUMO
1,2,3-Trisubstituted closo-dodecaborates with B-O, B-N, and B-C bonds as well as a fused borane oxazole ring have been synthesized by rhodium-catalyzed direct cage B-H alkenylation and annulation of ureido boranes in the first reported example of regioselective B-H bond functionalization of the [B12 H12 ]2- cage by transition-metal catalysis. This reaction proceeded at room temperature under ambient conditions and exhibited excellent selectivity for efficient monoalkenylation with good functional-group tolerance. The urea moiety enabled B-H activation by acting as a directing group, was incorporated in the oxazole ring inâ situ, and also avoided multiple alkenylation. A possible mechanism is proposed on the basis of the isolation of a rhodium agostic intermediate and control experiments.
RESUMO
BACKGROUND: The long-term outcome of never-treated patients with schizophrenia is unclear. AIMS: To compare the 14-year outcomes of never-treated and treated patients with schizophrenia and to establish predictors for never being treated. METHOD: All participants with schizophrenia (n = 510) in Xinjin, Chengdu, China were identified in an epidemiological investigation of 123 572 people and followed up from 1994 to 2008. RESULTS: The results showed that there were 30.6%, 25.0% and 20.4% of patients who received no antipsychotic medication in 1994, 2004 and 2008 respectively. Compared with treated patients, those who were never treated in 2008 were significantly older, had significantly fewer family members, had higher rates of homelessness, death from other causes, being unmarried, living alone, being without a caregiver and poor family attitudes. Partial and complete remission in treated patients (57.3%) was significantly higher than that in the never-treated group (29.8%). Predictors of being in the never-treated group in 2008 encompassed baseline never-treated status, being without a caregiver and poor mental health status in 1994. CONCLUSIONS: Many patients with schizophrenia still do not receive antipsychotic medication in rural areas of China. The 14-year follow-up showed that outcomes for the untreated group were worse. Community-based mental healthcare, health insurance and family intervention are crucial for earlier diagnosis, treatment and rehabilitation in the community.
Assuntos
Antipsicóticos/uso terapêutico , Adesão à Medicação/estatística & dados numéricos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/mortalidade , Adulto , Idoso , Causas de Morte , China , Feminino , Seguimentos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Fatores de Risco , População Rural , Resultado do TratamentoRESUMO
Rubus idaeus is a pivotal cultivated species of raspberry known for its attractive color, distinct flavor, and numerous health benefits. It can be used in pharmaceutical, cosmetics, agriculture and food industries not only as fresh but also as a processed product. Nowadays due to climatic changes, genetic diversity of cultivars has decreased dramatically. However, until now, the status of wild R. idaeus resources in China have not been exploited. In this study, we investigated the resources of wild R. idaeus in China to secure its future potential and sustainability. The MaxEnt model was used to predict R. idaeus suitable habitats and spatial distribution patterns for current and future climate scenarios, based on wild domestic geographic distribution data, current and future climate variables, and topographic variables. The results showed that, mean temperature of the coldest quarter (bio11), precipitation of the coldest quarter (bio19), precipitation of the warmest quarter (bio18), and temperature seasonality (bio4) were crucial factors affecting the distribution of R. idaeus. Presently, the suitable habitats were mainly distributed in the north of China including Xinjiang, Inner Mongolia, Gansu, Ningxia, Shaanxi, Shanxi, Hebei, Beijing, Liaoning, Jilin, Heilongjiang. According to our results, in 2050s, the total suitable habitat area of R. idaeus will increase under SSP1-2.6 and then will be decreased with climate change, while in the 2090s, the total suitable habitat area will continue to decrease. From the present to the 2090s, the centroid distribution of R. idaeus in China will shift towards the east and the species will always be present in Inner Mongolia. Our results provide wild resource information and theoretical reference for the protection and rational utilization of R. idaeus.
Assuntos
Ecossistema , Rubus , China , Mudança Climática , Clima , Estações do AnoRESUMO
Ovarian cancer (OvCa) is characterized by early metastasis and high mortality rates, underscoring the need for deeper understanding of these aspects. This study explores the role of glucose transporter 3 (GLUT3) driven by zinc finger E-box-binding homeobox 1 (ZEB1) in OvCa progression and metastasis. Specifically, this study explored whether ZEB1 promotes glycolysis and assessed the potential involvement of GLUT3 in this process in OvCa cells. Our findings revealed that ZEB1 and GLUT3 were excessively expressed and closely correlated in OvCa. Mechanistically, ZEB1 activates the transcription of GLUT3 by binding to its promoter region. Increased expression of GLUT3 driven by ZEB1 dramatically enhances glycolysis, and thus fuels Warburg Effect to promote OvCa progression and metastasis. Consistently, elevated ZEB1 and GLUT3 expression in clinical OvCa is correlated with poor prognosis, reinforcing the profound contribution of ZEB1-GLUT3 axis to OvCa. These results suggest that activation of GLUT3 expression by ZEB1 is crucial for the proliferation and metastasis of OvCa via fueling glycolysis, shedding new light on OvCa treatment.
Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 3 , Neoplasias Ovarianas , Ativação Transcricional , Efeito Warburg em Oncologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Glicólise/genética , Animais , Proliferação de Células/genética , Camundongos , Regiões Promotoras Genéticas , Camundongos NusRESUMO
Resistance to immunotherapy in colorectal cancer (CRC) is associated with obstruction of FAS (Apo-1 or CD95)-dependent apoptosis, a hallmark of cancer. Here it is demonstrated that the upregulation of pirin (PIR) protein in colon cancers promotes tumorigenesis. Knockout or inhibition of PIR dramatically increases FAS expression, FAS-dependent apoptosis and attenuates colorectal tumor formation in mice. Specifically, NFκB2 is a direct transcriptional activator of FAS and robustly suppressed by PIR in dual mechanisms. One is the disruption of NFκB2 complex (p52-RELB) association with FAS promoter, the other is the inhibition of NIK-mediated NFκB2 activation and nuclear translocation, leading to the inability of active NFκB2 complex toward the transcription of FAS. Furthermore, PIR interacts with FAS and recruits it in cytosol, preventing its membrane translocation and assembling. Importantly, knockdown or knockout of PIR dramatically sensitizes cells to FAS mAb- or active CD8+ T cells-triggered cell death. Taken together, a PIR-NIK-NFκB2-FAS survival pathway is established, which plays a key role in supporting CRC survival.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Apoptose , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/patologia , Camundongos KnockoutRESUMO
Increased fatty acid synthesis benefits glioblastoma malignancy. However, the coordinated regulation of cytosolic acetyl-CoA production, the exclusive substrate for fatty acid synthesis, remains unclear. Here, we show that proto-oncogene tyrosine kinase c-SRC is activated in glioblastoma and remodels cytosolic acetyl-CoA production for fatty acid synthesis. Firstly, acetate is an important substrate for fatty acid synthesis in glioblastoma. c-SRC phosphorylates acetyl-CoA synthetase ACSS2 at Tyr530 and Tyr562 to stimulate the conversion of acetate to acetyl-CoA in cytosol. Secondly, c-SRC inhibits citrate-derived acetyl-CoA synthesis by phosphorylating ATP-citrate lyase ACLY at Tyr682. ACLY phosphorylation shunts citrate to IDH1-catalyzed NADPH production to provide reducing equivalent for fatty acid synthesis. The c-SRC-unresponsive double-mutation of ACSS2 and ACLY significantly reduces fatty acid synthesis and hampers glioblastoma progression. In conclusion, this remodeling fulfills the dual needs of glioblastoma cells for both acetyl-CoA and NADPH in fatty acid synthesis and provides evidence for glioma treatment by c-SRC inhibition.
Assuntos
Acetilcoenzima A , Ácidos Graxos , Glioblastoma , Proto-Oncogene Mas , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Linhagem Celular Tumoral , Fosforilação , Acetilcoenzima A/metabolismo , Animais , Proteína Tirosina Quinase CSK/metabolismo , Proteína Tirosina Quinase CSK/genética , Quinases da Família src/metabolismo , Quinases da Família src/genética , Progressão da Doença , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , NADP/metabolismo , Camundongos Nus , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismoRESUMO
The development of a reversal agent that can rapidly reverse clinically used nondepolarizing neuromuscular blocking agents (NMBAs) has long been a challenge. Here, we report the synthesis of a series of highly water-soluble acyclic cucurbit[n]urils (acCBs). Systematic structure-activity relationship studies reveal that introducing two propylidene units on the peripheral benzene rings not only remarkably improves the activity of the corresponding derivative acCB6 (FY 3451) in reversing the neuromuscular block of rocuronium, cisatracurium, vecuronium, and pancuronium, the four clinically used NMBAs, through stable inclusion, but also allows for high water-solubility as well as a maximum tolerated dose (2000 mg/kg on rats). In vivo experiments with rats show that, at the identical dose of 25 mg/kg, for rocuronium, vecuronium, and pancuronium, acCB6 can achieve a recovery time shorter than that of sugammadex for rocuronium and, at the dose of 100 mg/kg, realize comparably rapid reversal for cisatracurium.
Assuntos
Bloqueadores Neuromusculares , Solubilidade , Animais , Relação Estrutura-Atividade , Bloqueadores Neuromusculares/farmacologia , Bloqueadores Neuromusculares/síntese química , Ratos , Masculino , Água/química , Ratos Sprague-Dawley , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Bloqueio NeuromuscularRESUMO
Dalbergia cultrata Pierre Graham ex Benth (D. cultrata) is a precious rosewood tree species that grows in the tropical and subtropical regions of Asia. In this study, we used PacBio long-reading sequencing technology and Hi-C assistance to sequence and assemble the reference genome of D. cultrata. We generated 171.47 Gb PacBio long reads and 72.43 Gb Hi-C data and yielded an assembly of 10 pseudochromosomes with a total size of 690.99 Mb and Scaffold N50 of 65.76 Mb. The analysis of specific genes revealed that the triterpenoids represented by lupeol may play an important role in D. cultrata's potential medicinal value. Using the new reference genome, we analyzed the resequencing of 19 Dalbergia accessions and found that D. cultrata and D. cochinchinensis have the latest genetic relationship. Transcriptome sequencing of D. cultrata leaves grown under cold stress revealed that MYB transcription factor and E3 ubiquitin ligase may be playing an important role in the cold response of D. cultrata. Genome resources and identified genetic variation, especially those genes related to the biosynthesis of phytochemicals and cold stress response, will be helpful for the introduction, domestication, utilization, and further breeding of Dalbergia species.
RESUMO
ELP3, the catalytic subunit of Elongator complex, is an acetyltransferase and associated with tumor progression. However, the detail of ELP3 oncogenic function remains largely unclear. Here, we found that ELP3 stabilizes c-Myc to promote tumorigenesis in an acetyltransferase-independent manner. Mechanically, ELP3 competes with the E3-ligase FBXW7ß for c-Myc binding, resulting in the inhibition of FBXW7ß-mediated ubiquitination and proteasomal degradation of c-Myc. ELP3-knockdown diminishes glycolysis and glutaminolysis and dramatically retards cell proliferation and xenograft growth by downregulating c-Myc, and such effects are rescued by reconstitution of c-Myc expression. Moreover, ELP3 and c-Myc were overexpressed with a positive correlation in colorectal cancer and hepatocellular carcinoma. Taken together, we elucidate a new function of ELP3 in promoting tumorigenesis by stabilizing c-Myc, suggesting that inhibition of ELP3 is a potential strategy for the therapy of c-Myc-driven carcinomas.
RESUMO
BACKGROUND & AIMS: Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme of the de novo serine synthesis pathway (SSP), has been implicated in the carcinogenesis and metastasis of hepatocellular carcinoma (HCC) because of its excessive expression and promotion of SSP. In previous experiments we found that SSP flux was diminished by knockdown of zinc finger E-box binding homeobox 1 (ZEB1), a stimulator of HCC metastasis, but the underlying mechanism remains largely unknown. Here, we aimed to determine how SSP flux is regulated by ZEB1 and the contribution of such regulation to carcinogenesis and progression of HCC. METHODS: We used genetic mice with Zeb1 knockout in liver specifically to determine whether Zeb1 deficiency impacts HCC induced by the carcinogen diethylnitrosamine plus CCl4. We explored the regulatory mechanism of ZEB1 in SSP flux using uniformly-labeled [13C]-glucose tracing analyses, liquid chromatography-mass spectrometry, real-time quantitative polymerase chain reaction, luciferase report assay, and chromatin immunoprecipitation assay. We determined the contribution of the ZEB1-PHGDH regulatory axis to carcinogenesis and metastasis of HCC by cell counting assay, methyl thiazolyl tetrazolium (MTT) assay, scratch wound assay, Transwell assay, and soft agar assay in vitro, orthotopic xenograft, bioluminescence, and H&E assays in vivo. We investigated the clinical relevance of ZEB1 and PHGDH by analyzing publicly available data sets and 48 pairs of HCC clinical specimens. RESULTS: We identified that ZEB1 activates PHGDH transcription by binding to a nonclassic binding site within its promoter region. Up-regulated PHGDH augments SSP flux to enable HCC cells to be more invasive, proliferative, and resistant to reactive oxygen species and sorafenib. Orthotopic xenograft and bioluminescence assays have shown that ZEB1 deficiency significantly impairs the tumorigenesis and metastasis of HCC, and such impairments can be rescued to a large extent by exogenous expression of PHGDH. These results were confirmed by the observation that conditional knockout of ZEB1 in mouse liver dramatically impedes carcinogenesis and progression of HCC induced by diethylnitrosamine/CCl4, as well as PHGDH expression. In addition, analysis of The Cancer Genome Atlas database and clinical HCC samples showed that the ZEB1-PHGDH regulatory axis predicts poor prognosis of HCC. CONCLUSIONS: ZEB1 plays a crucial role in stimulating carcinogenesis and progression of HCC by activating PHGDH transcription and subsequent SSP flux, deepening our knowledge of ZEB1 as a transcriptional factor in fostering the development of HCC via reprogramming the metabolic pathway.