RESUMO
This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain.
RESUMO
New dipolar sensitizers containing an ethyl thieno[3,4-b]thiophene-2-carboxylate (ETTC) entity in the conjugated spacer have been synthesized in two isomeric forms. These compounds were used as the sensitizers of n-type dye-sensitized solar cells (DSSCs). The best conversion efficiency (5.31%) reaches approximately 70% of the N719-based (7.41%) DSSC fabricated and measured under similar conditions. The ETTC-containing compounds exhibit a bathochromic shift of the absorption compared to their thiophene congeners due to the quinoid effect, however, charge-trapping at the ester group of ETTC was found to jeopardize the electron injection and lower the cell efficiency. Charge trapping is alleviated as the ester group of ETTC is replaced with a hydrogen atom, as evidenced from the theoretical computation.
RESUMO
Dye-sensitized solar cells are a promising solar technology because of their low cost, reliability, and high efficiency, compared with silicon-based solar cells. Efforts over the last two decades have increased solar cell efficiency to 12% based on liquid electrolytes, and more research on solid-state devices is necessary to determine their practical usage and long-term stability. The development of solid-state devices has achieved an overall efficiency over 7% using hole transporting materials. This study reviews current progress on hole transporting materials, sensitizers, and mesoporous TiO(2) in solid-state dye-sensitized solar cells using small organic molecules as the hole transporting material. This study also discusses the key factors, such as molecular structure design and interfacial problems, affecting device performance.
RESUMO
New heteroleptic ruthenium complexes have been synthesized and used as the sensitizers for dye-sensitized solar cells (DSSCs). The ancillary bipyridine ligand contains rigid aromatic segments (fluorene-, carbazole-, or dithieno[3,2-b:2',3'-d]pyrrole-substituted bipyridine) tethered with a hydrophobic hexyl substituent. The conjugated aromatic segment results in significant bathochromic shift and hyperchromic effects in these complexes compared with Z907 (cis-[RuLL'(NCS)(2)]; L=4,4'-dicarboxylic acid-2,2'-bipyridine, L'=4,4'-dinonyl-2,2'- bipyridine). The long hydrocarbon chains help to suppress the dark current if appropriately disposed. DSSCs that use these complexes exhibit very impressive conversion efficiencies (5.94 to 6.91 %) that surpass that of Z907-based (6.36 %) DSSCs and are comparable with that of N719-based standard cells (7.13 %; N719=cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium)) fabricated and measured under similar conditions (active area: 0.5×0.5â cm(2); AMâ 1.5 sunlight).
RESUMO
A new series of amphiphilic heteroleptic ruthenium(II) sensitizers with a fluorous bis-ponytailed bipyridine ancillary ligand, [Ru(H(2)dcbpy)(4,4'-bis(R(f)CH(2)OCH(2))-2,2'-bpy)(NCS)(2)] [where R(f) = HCF(2)CF(2) (CT4), C(3)F(7) (CT7), and HCF(2)CF(2)CF(2)CF(2) (CT8)], have been synthesized and fully characterized by UV/vis, visible emission, NMR, fast atom bombardment mass spectrometry, and cyclic voltammetric studies. Dye-sensitized solar cells (DSCs) based on these dyes exhibit efficiencies comparable with that of the standard cell based on N719. The conversion efficiency of a CT7- or CT8-based DSC is ~9% higher than that of Z907 with a nonfluorous bis-ponytailed bipyridine ancillary ligand. The fluorous chains were found to increase the dye density on TiO(2) and to help to suppress the dye desorption.
RESUMO
An electrically conductive Cu-MOF, {[Cu2(6-mercaptonicotinic acid)(6-mercaptonicotinate)]·NH4}n, was successfully electrodeposited on the conductive substrates via using poly(3,4-ethylenedioxythiophene) (PEDOT) as the binder. Multiple functionalities of the Cu-MOF microparticle within the Cu-MOF/PEDOT composite electrode were systematically vindicated as (1) releasing the cohesive strength among the PEDOT matrix, thus enhancing the film adhesion to substrate, (2) providing excellent intrinsic heterogeneous rate constant via lowering the reaction active energy, (3) supplying numerous active sites at the center or edges on its (-Cu-S-)n honeycomb-like planes, (4) facilitating the electron transfer through its two-dimensional (-Cu-S-)n plains, and (5) benefiting the penetration of the redox mediators through its porous frameworks. In multiple redox mediators (i.e., I-/I3-, cobalt(II/III)-complex, and copper(I/II)-complex), the composite Cu-MOF/PEDOT electrode exhibited superior electrocatalyst activity and kept almost 100% of its initial redox peak currents after continuous cyclic voltammetric scanning for 300 cycles. As a high-performance electrocatalyst for the counter electrode in dye-sensitized solar cells (DSSCs), the composite Cu-MOF/PEDOT electrode rendered its cell a decent solar-to-electricity conversion efficiency of up to 9.45% at 1 sun and 22.80% at room light illumination. Compared to the traditional platinum electrode (7.67%), the low-cost Cu-MOF/PEDOT composite electrode has great possibility to be used for various electrochemical devices and the Internet-of-things applications.
RESUMO
A series of orientation-adjustable metal-organic framework (MOF) nanorods, CoFe(dobpdc)-I to CoFe(dobpdc)-III (dobpdc = 4,4'-dihydroxybiphenyl-3,3'-dicarboxylate), is developed on a 3D nickel foam (NF) template. By modulating the solvent composition for synthesis, the feature of MOF nanorods on the template can be varied from disorganized to a unidirectional orientation perpendicular to the NF. Well-aligned, vertically oriented CoFe(dobpdc)-III nanorods are hydrophilic and have more exposed active sites and interfacial charge transfer ability. Consequently, they exhibit a superior activity for oxygen evolution reaction (OER) with ultralow overpotentials of 176 and 240 mV at 10 and 300 mA cm-2 in 1.0 M KOH (aq), respectively. CoFe(dobpdc)-III also shows a record low overpotential of 204 mV at J10 mA cm-2 among the electrocatalysts based on CoFe MOF and an excellent overpotential at a high current density (100 mA cm-2) of 312 mV in 0.1 M KOH (aq). This is the first report of a convenient method to straighten up MOF nanorods on a template for highly efficient OER.
RESUMO
A novel series of dipolar organic dyes containing diarylamine as the electron donor, 2-cyanoacrylic acid as the electron acceptor, and fluorene and a heteroaromatic ring as the conjugating bridge have been developed and characterized. These metal-free dyes exhibited very high molar extinction coefficients in the electronic absorption spectra and have been successfully fabricated as efficient nanocrystalline TiO(2) dye-sensitized solar cells (DSSCs). The solar-energy-to-electricity conversion efficiencies of DSSCs ranged from 4.92 to 6.88%, which reached 68-96% of a standard device of N719 fabricated and measured under the same conditions. With a TiO(2) film thickness of 6 microm, DSSCs based on these dyes had photocurrents surpassing that of the N719-based device. DFT computation results on these dyes also provide detailed structural information in connection with their high cell performance.
RESUMO
The synthesis, electronic properties, and performance in dye-sensitized solar cells (DSSCs) of four cone-shaped organic dyes (ITD, ITD-Th, ITD-Hx, and ITD-OM) containing the isotruxene π-scaffold are reported. Selective substitution of the unsymmetrical isotruxene core with two diarylamino donors and one cyanocarboxylic acid acceptor was achieved by using a prefunctionalized dibromoisotruxene building block. The ortho-para-branched isotruxene core allows strong electronic couplings among the donors and the acceptor, leading to red-shifted absorption profiles with significant charge-transfer character. All four isotruxene dyes display reversible anodic waves in cyclic voltammagrams with both HOMO and LUMO potentials suitable for application in DSSCs. The DSSCs fabricated with these cone-shaped organic dyes exhibited high open-circuit voltages (0.67-0.76 V) and fill factors (0.67-0.72) with a power conversion efficiency (η) up to 5.45%, which is 80% of the ruthenium dye N719-based standard cell fabricated and measured under the same conditions.
RESUMO
Synthesis and characterization of dendrimers containing thienylbenzene repeating units, red-emitting benzothiadiazole core, and triarylamine peripheries that bear naphthyl units are reported. The relevant dendrimers of different generations are classified as G(nb) (n=1-3), while the tert-butyl dendrimers G(na) with the acceptor alone were also synthesized to serve as control chromophores that avoid donor-acceptor interactions. The resulting dendrimers are capable of harvesting photon energy through efficient energy transfer among donor-acceptor moieties, so that highly luminescent red fluorophores result. Transient fluorescence studies suggest that the energy transfer and its efficiency are approximately unity in all G(a) dendrimers, whereas the rate of energy transfer for the G(b) dendrimers is suppressed, that is, charge transfer from the core to the periphery is a significant quenching pathway. These dendrimers are amorphous in nature with high glass transition temperatures (176-201 degrees C). Electroluminescent devices were fabricated by using the dendrimers as hole-transporting emitters, and the devices exhibit promising red emission parameters.
RESUMO
Aqueous dye-sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum-dot-sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.
RESUMO
A new series of benzimidazole (BIm)-based dyes (SC32 and SC33) and pyridoimidazole-(PIm) based dyes (SC35, SC36N and SC36) were synthesized as sensitizers for dye-sensitized solar cells (DSSCs). The N-substituent and C-substituent at the BIm and PIm cores were found to be the dominating factor in determining the electronic properties of the dyes and their DSSCs performance. The efficiency of BIm-based dyes (SC35 and SC36) was found to be higher than that of the PIm-based dyes (SC32 and SC33) due to better light harvesting. The C-substituents in SC36, a 4-hexylloxybenzene and a hexyl chain, are beneficial to dark current suppression, and hence SC36 achieves the best efficiency of 7.38 % (≈85 % of N719). The two BIm dyes have better cell efficiencies than their congeners with a bithiophene entity between the BIm and the anchor due to better light harvesting of the former.
RESUMO
Benzo[1,2-b:6,5-b']dithiophene (BDT) entity with rigid skeleton is introduced into the conjugated spacer of organic dyes, with triphenylamine as the electron donor and 2-cyanoacrylic acid as the acceptor, have been prepared for dye-sensitized solar cells. Inserting an aromatic entity between BDT and the anchor extends the absorption wavelength of the dyes and improves the dark current suppression efficiency, and consequently leads to better cell performance. Addition of chenodeoxycholic acid coadsorbent alleviates dye aggregation and results in better cell efficiency. The dye inserted with 4H-cyclopenta[2,1-b:3,4-b']dithiophene entity achieves the best efficiency (9.11%) when I-/I3- was used as the electrolyte. When Co(phen)32+/3+ was used as the electrolyte, the efficiency further boosts to 9.88%.
RESUMO
[reaction: see text] Dendron-encapsulated materials having a benzo[c][1,2,5]thiadiazole-based red-emitting core and p-type and/or n-type peripheries were synthesized. Intra- and intermolecular energy transfer from the peripheries to the core were found to be peripheries dependent. Red-emitting electroluminescent devices with promising performance were fabricated.
RESUMO
Dipolar dyes comprising an arylamine as the electron donor, a cyanoacrylic acid as electron acceptor, and an electron deficient naphtho[2,3-c][1,2,5]thiadiazole (NTD) or naphtho[2,3-d][1,2,3]triazole (NTz) entity in the conjugated spacer, were developed and used as the sensitizers in dye-sensitized solar cells (DSSCs). The introduction of the NTD unit into the molecular frame distinctly narrows the HOMO/LUMO gap with electronic absorption extending to >650 nm. However, significant charge trapping and dye aggregation were found in these dyes. Under standard global AM 1.5 G illumination, the best cell photovoltaic performance achieved 6.37 and 7.53% (â¼94% relative to N719-based standard cell) without and with chenodeoxycholic acid (CDCA) coadsorbent, respectively. Without CDCA, the NTz dyes have higher power conversion efficiency (7.23%) than NTD dyes due to less charge trapping, dye aggregation, and better dark current suppression.
RESUMO
Metal-free D-π-RS-π-A type sensitizers, consisting of triphenylamine as the electron donor, 2,3-bis(3-(2-ethylhexyl)-5-methylthiophen-2-yl)dithieno[3,2-f:2',3'-h]quinoxaline (DTQT) as the rigidified conjugation spacer (RS), thiophene as the π-spacer, and 2-cyanoacrylic acid as the acceptor/anchor, have broad absorption spectra ranging from 350 to 550 nm and a high molar extinction coefficient up to >46â¯200 M(-1) cm(-1). Under simulated AM 1.5 G illumination, the dye-sensitized solar cells (DSSCs) fabricated from the dyes exhibited light-to-electricity conversions in the range of 6.78% to 8.27%. The best efficiency is slightly higher than that of N719-based standard DSSC (7.92%). The efficiency can be further boosted to 8.51% by optimizing the concentration of LiI electrolyte.
RESUMO
New heterocyclic quinoid-based hole transporting materials (HTMs) with a rigid quinoid core [3,6-di(2H-imidazol-2-ylidene)cyclohexa-1,4-diene] have been synthesized. The new HTMs have good hole mobility (>10-4 â cm2 V-1 s-1 ) and very intense absorption in the near-infrared region extending to >800â nm. High performance perovskite solar cells can be fabricated using these HTMs without dopant. The best cell efficiency under simulated AM 1.5 G illumination reaches 12.22 %, which is comparable with that (12.58 %) using doped 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) as the HTM.
Assuntos
Absorção Fisico-Química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Compostos Heterocíclicos/química , Raios Infravermelhos , Óxidos/química , Quinonas/química , Energia Solar , Titânio/química , Modelos Moleculares , Conformação MolecularRESUMO
Versatile dyes based on benzothiadiazole and benzoselenadiazole chromophores have been developed that perform efficiently in dye-sensitized solar cells. Power conversion efficiency of 3.77% is realized for a dye in which charge recombination is probably hindered by the nonplanar charge-separated structure.
RESUMO
An electrodeposited Ag adlayer (upd, underpotential deposition) is utilized to improve monolayer photopolymerization of diphenyldiacetylene derivatives (DPDAs) that would otherwise exhibit no polymerization in solid state. Topochemical reaction of diacetylene derivatives via solid-state 1,4-addition yields polydiacetylenes which are of great importance due to properties associated with their ene-yne conjugated backbones. The polymerization efficiency heavily depends on the molecular arrangement in the crystals. For example, crystals of most DPDA derivatives show no activity for topochemical reaction because the bulky phenyl end groups space out the triple bonds and thus DPDAs require relatively large translation and rotation angles for polymerization. In principle, topochemical reaction is viable if molecules are in optimal arrangement. The upd interlayer can be applied to tune the adsorbate-substrate interactions, intermolecular spacing, and the molecular tilt angle by controlling the coverage of the Ag adlayer. It is thus possible to manipulate the molecular arrangement of DPDAs for the subsequent polymerization. Successful photopolymerization of DPDA monolayers is realized from the decrease in nu(C[triple bond]C) intensity by infrared reflectance absorbance spectroscopy, growth of ene-yne pi-pi* transition by UV-vis measurements, and enhanced electrochemical stability by the cathodic desorption protocol. The optimal efficiency of polymerization takes place on upd-modified substrates that can generate approximately 45 degrees tilt angle for DPDA derivatives.
RESUMO
New organic dyes that contain variable lengths of conjugation featuring alternating thiophene and fluorene segments have been synthesized and efficient nano-crystalline TiO2 based dye-sensitized solar cells were fabricated using these molecules as light-harvesting sensitizers.