Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(25): 8890-8898, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35704426

RESUMO

Identifying cell phenotypes is essential for understanding the function of biological macromolecules and molecular biology. We developed a noninvasive, label-free, single-cell Raman imaging analysis platform to distinguish between the cell phenotypes of the HeLa cell wild type (WT) and cyclin-dependent kinase 6 (CDK6) gene knockout (KO) type. Via large-scale Raman spectral and imaging analysis, two phenotypes of the HeLa cells were distinguished by their intrinsic biochemical profiles. A significant difference was found between the two cell lines: large lipid droplets formed in the knockout HeLa cells but were not observed in the WT cells, which was confirmed by Oil Red O staining. The band ratio of the Raman spectrum of saturated/unsaturated fatty acids was identified as the Raman spectral marker for HeLa cell WT or gene knockout type differentiation. The interaction between organelles involved in lipid metabolism was revealed by Raman imaging and Lorentz fitting, where the distribution intensity of the mitochondria and the endoplasmic reticulum membrane decreased. At the same time, lysosomes increased after the CDK6 gene knockout. The parameters obtained from Raman spectroscopy are based on hierarchical cluster analysis and one-way ANOVA, enabling highly accurate cell classification.


Assuntos
Organelas , Análise Espectral Raman , Quinase 6 Dependente de Ciclina/genética , Ácidos Graxos , Células HeLa , Humanos , Fenótipo , Análise Espectral Raman/métodos , Coloração e Rotulagem
2.
Small ; 16(19): e2000708, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32307877

RESUMO

The development of luminescent materials with concurrent multimodal emissions is a great challenge to improve security and data storage density. Lanthanide-doped nanocrystals are particularly appropriate for such applications for their abundant intermediate energy states and distinguishable spectroscopic profiles. However, traditional lanthanide luminescent nanoparticles have a limited capacity for information storage or complexity to shield against counterfeiting. Herein, it is demonstrated that the combination of upconverting and downshifting emissions in a particulate designed lanthanide-doped core@multishell nanoarchitecture allows the generation of multicolor dual-modal luminescence over a wide spectral range for complex information storage. Precise control of lanthanide dopants distribution in the core and distinct shells enables simultaneous excitation of 980/808 nm focusing/defocusing laser and 254 nm light and produces complex upconverting emissions from Er, Tm, Eu, and Tb via multiphoton energy transfer processes and downshifting emissions from Eu and Tb via efficient energy transfer from Ce to Eu/Tb in Gd-assisted lattices. It is experimentally proven that multiple visualized anti-counterfeit and information encryption with facile decryption and authentication using screen-printing inks containing the present core@multishell nanocrystals are practically applicable by selecting different excitation modes.

3.
Eur J Pharmacol ; 926: 175033, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35598845

RESUMO

Efficient antiviral drug discovery has been a pressing issue of global public health concern since the outbreak of coronavirus disease 2019. In recent years, numerous in vitro and in vivo studies have shown that 25-hydroxycholesterol (25HC), a reactive oxysterol catalyzed by cholesterol-25-hydroxylase, exerts broad-spectrum antiviral activity with high efficiency and low toxicity. 25HC restricts viral internalization and disturbs the maturity of viral proteins using multiple mechanisms. First, 25HC reduces lipid rafts and cholesterol in the cytomembrane by inhibiting sterol-regulatory element binding proteins-2, stimulating liver X receptor, and activating Acyl-coenzyme A: cholesterol acyl-transferase. Second, 25HC impairs endosomal pathways by restricting the function of oxysterol-binding protein or Niemann-pick protein C1, causing the virus to fail to release nucleic acid. Third, 25HC disturbs the prenylation of viral proteins by suppressing the sterol-regulatory element binding protein pathway and glycosylation by increasing the sensitivity of glycans to endoglycosidase. This paper reviews previous studies on the antiviral activity of 25HC in order to fully understand its role in innate immunity and how it may contribute to the development of urgently needed broad-spectrum antiviral drugs.


Assuntos
COVID-19 , Oxisteróis , Antivirais/farmacologia , Colesterol/metabolismo , Homeostase , Humanos , Hidroxicolesteróis/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo
4.
Curr Pharm Des ; 28(18): 1445-1456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35593344

RESUMO

The analytical investigation of the pharmaceutical process monitors the critical process parameters of the drug, beginning from its development until marketing and post-marketing, and appropriate corrective action can be taken to change the pharmaceutical design at any stage of the process. Advanced analytical methods, such as Raman spectroscopy, are particularly suitable for use in the field of drug analysis, especially for qualitative and quantitative work, due to the advantages of simple sample preparation, fast, non-destructive analysis speed and effective avoidance of moisture interference. Advanced Raman imaging techniques have gradually become a powerful alternative method for monitoring changes in polymorph distribution and active pharmaceutical ingredient distribution in drug processing and pharmacokinetics. Surface-enhanced Raman spectroscopy (SERS) has also solved the inherent insensitivity and fluorescence problems of Raman, which has made good progress in the field of illegal drug analysis. This review summarizes the application of Raman spectroscopy and imaging technology, which are used in the qualitative and quantitative analysis of solid tablets, quality control of the production process, drug crystal analysis, illegal drug analysis, and monitoring of drug dissolution and release in the field of drug analysis in recent years.


Assuntos
Drogas Ilícitas , Análise Espectral Raman , Química Farmacêutica/métodos , Humanos , Preparações Farmacêuticas , Controle de Qualidade , Análise Espectral Raman/métodos , Comprimidos/química , Tecnologia Farmacêutica/métodos
5.
Light Sci Appl ; 11(1): 52, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256583

RESUMO

Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels. Herein, a family of lanthanide (Ln3+) ions was successfully incorporated into a Bi:Cs2AgInCl6 lead-free double-perovskite (DP) semiconductor, expanding the spectral range from visible (Vis) to near-infrared (NIR) and improving the photoluminescence quantum yield (PLQY). After multidoping with Nd, Yb, Er and Tm, Bi/Ln:Cs2AgInCl6 yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of ~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f-4f transitions of the Ln3+ dopants. Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes. To avoid adverse energy interactions between the various Ln3+ ions in a single DP host, a heterogeneous architecture was designed to spatially confine different Ln3+ dopants via a "DP-in-glass composite" (DiG) structure. This bottom-up strategy endowed the prepared Ln3+-doped DIG with a high PLQY of 40% (nearly three times as high as that of the multidoped DP) and superior long-term stability. Finally, a compact Vis-NIR ultrabroadband (400~2000 nm) light source was easily fabricated by coupling the DiG with a commercial UV LED chip, and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.

6.
Nanoscale ; 14(9): 3407-3415, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35175270

RESUMO

The development of advanced luminescent materials is highly desirable for addressing the rising threat of forgery. However, it is challenging to achieve stable full-color upconversion (UC) tuning in the same matrix upon a single-beam light excitation so as to ensure that authentic items are irreproducible. Herein, hexagonal Er/Tm:CsYb2F7 nanocrystals (NCs) embedded inorganic glass via an in situ crystallization strategy is fabricated, which can emit blue, cyan, green, yellow, orange, red and near-infrared (NIR) UC emissions by simply modifying an incident 980 nm laser power. This UC tuning is attributed to the combination roles of the highly efficient laser-induced photothermal effect of the CsYb2F7 host and simultaneous emissions of Er and Tm activators. Importantly, the robust inorganic glass matrix endows Er/Tm:CsYb2F7 NCs with excellent water resistance and the ability to withstand high-power laser irradiation. Based on these unique characteristics, a proof-of-concept anti-counterfeiting experiment is designed. The results indicate that dynamic full-color UC luminescence patterns can be easily tuned by simply changing the power of the incident 980 nm laser. The present work not only confirms that the designed photothermal material can increase information security, but also provides a new idea for practical applications in the field of anti-counterfeiting.

7.
J Environ Sci (China) ; 22(2): 218-24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20397409

RESUMO

Effects of suction dredging on water quality and zooplankton community structure in a shallow of eutrophic lake, were evaluated. The results showed that a decreasing trend for levels of phosphorus, organic matter, total suspended solids, Chlorophyll a and Secchi transparency in the water column was found, while levels of water depth, electrical conductivity, total dissolved solids and NO3- -N concentration increased markedly post-dredging. The effects of dredging on dissolved oxygen, pH value and temperature were almost negligible. The zooplankton community structure responded rapidly to the environmental changes caused mainly by dredging. As a result, the abundance of rotifers decreased, while the density of zooplanktonic crustaceans increased markedly. The representative taxa were Brachionus angularis, B. budapestinensis, B. diversicornis, Synchaeta spp. and Neodiaptomus schmackeri. A distinct relationship between zooplankton taxa composition and their environment, unraveled by a redundancy analysis, indicating that the measured environment contributed to the variations in the zooplankton community structure to some extent. The first four synthetic environmental variables explained 51.7% of the taxonomic structure. Therefore, with the reduction of internal nutrient load and a shift in dominance by less eutrophic species, it inferred that dredging might be one of effective measures for environmental improvements of such lakes.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Zooplâncton/fisiologia , Animais , Monitoramento Ambiental
8.
ACS Appl Mater Interfaces ; 12(16): 18705-18714, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32216263

RESUMO

This work reports a novel dual-phase glass containing Tm:NaYbF4 upconverting nanocrystals (UCNCs) and CsPbBr3 perovskite nanocrystals (PNCs). The advantages of this kind of nanocomposite are that it provides a solid inorganic glass host for the in situ co-growth of UCNCs and PNCs, and protects PNCs against decomposition affected by the external environment. Tm:NaYbF4 NC-sensitized stable CsPbBr3 PNCs photon UC emission in PNCs is achieved under the irradiation of a 980 nm near-infrared (NIR) laser, and the mechanism is evidenced to be radiative energy transfer (ET) from Tm3+: 1G4 state to PNCs rather than nonradiative Förster resonance ET. Consequently, the decay lifetime of exciton recombination is remarkably lengthened from intrinsic nanoseconds to milliseconds since carriers in PNCs are fed from the long-lifetime Tm3+ intermediate state. Under the simultaneous excitation of the ultraviolet (UV) light and NIR laser, dual-modal photon UC and downshifting (DS) emissions from ultra-stable CsPbBr3 PNCs in the glass are observed, and the combined UC/DS emitting color can be easily altered by modifying the pumping light power. In addition, UC exciton recombination and Tm3+ 4f-4f transitions are found to be highly temperature sensitive. All these unique emissive features enable the practical applications of the developed dual-phase glass in advanced anti-counterfeit and accurate temperature detection.

9.
Nanoscale ; 11(46): 22359-22368, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31728479

RESUMO

Recently, lanthanide-doped luminescent materials have been widely studied and most investigations have been limited to rare-earth-containing fluorides formed with lighter alkali metals (Li, Na and K). Hence, it is important to understand the luminescence properties of cesium rare-earth fluorides. Herein, a novel type of multi-functional luminescent material, hexagonal ß-CsRe2F7 (Re = La-Lu, Y, Sc) nanocrystals, is successfully prepared via in situ crystallization inside glass. Specifically, Yb/Er:ß-CsLu2F7@glass exhibits a much higher upconversion quantum yield than Yb/Er:ß-NaYF4@glass (about 6 times), which is believed to be one of the most efficient upconversion materials so far. Impressively, Er:CsYb2F7@glass shows a significant photothermal effect, which can produce variable upconversion emission colors induced by an incident 980 nm laser diode, enabling it to find practical application in novel/high-precision anti-counterfeiting. In addition, Ce:CsLu2F7@glass with a maximal photoluminescence quantum yield reaching 67% can yield intense X-ray excitable radioluminescence, which is even higher than that of a commercial Bi4Ge3O12 scintillator. Benefitting from the effective protection of robust oxide glass, lanthanide-doped CsRe2F7 nanocrystals show long-term stability in harsh environments, retaining near 100% luminescence after directly immersing them in water/oil for 30 days. It is expected that the present nanocomposites have potential applications in the fields of high-end upconversion anti-counterfeiting and high-energy radiation detection.

10.
Huan Jing Ke Xue ; 30(11): 3300-5, 2009 Nov.
Artigo em Zh | MEDLINE | ID: mdl-20063744

RESUMO

Carbon source is the main factor influencing biological denitrification efficiency. In most cities of China, carbon content in sewage was observed to be low, herein carbon source supplement should be considered to provide electron donors needed in biological denitrification process. The influence of adding different carbon sources through aeration pipe of integrated vertical-flow constructed wetland (IVCW) on nitrogen removal had been studied. Carbon source supplement to the bottom of IVCW could improve microbe conditions and intensify nitrogen removalfunction of IVCW. The results showed that glucose as external carbon source was better than carboxymethyl cellulose (CMC) on denitrification. Nitrogen removal had significant difference between adding glucose and no carbon source in IVCW system (p < 0.05). By the experiments of adding different quantity of glucose, the dose of 1.5 g glucose under 60 L x d(-1) hydraulic load was the optimization for denitrification. C6H12O6:NO3(-) -N was 4.3 and far lower than that by adding in inflow. So carbon source supplement to the bottom of IVCW through aeration pipe could save carbon source supplement cost. Additionally, adding glucose for four hours before influent feeding could improve nitrogen removal.


Assuntos
Carbono/metabolismo , Glucose/metabolismo , Nitrogênio/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Biodegradação Ambiental , Carbono/química , Glucose/química , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA