Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Idioma
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 39(1): 310-320, 2018 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-29965697

RESUMO

In order to study the effects of soil amendments on greenhouse gas emissions, five different fertilization treatments (no fertilization, conventional fertilization, conventional fertilization+bentonite, conventional fertilization+biochar, and conventional fertilization+potassium polyacrylate, labeled as NF, CK, B, C, and PAM) were applied on corn fields in the Hetao irrigation district during the maize growing seasons of 2015 and 2016, and the samples were analyzed by static chamber-gas chromatography. The results showed that N2O had a bimodal emission pattern in the Hetao Irrigation Area, and the N2O emission peak appeared five to seven days after topdressing and irrigating (d.p.ti). The CH4 emission had no apparent pattern. While the CH4 emission peak appeared with a few treatments after 6 d.p.ti, the rest of the period indicated the CH4 absorption in the soil. CO2 had a unimodal emission pattern, and the CO2 emission peak appeared during the jointing stage of maize growth. In addition, the correlation analysis indicated that an increase in soil temperature could significantly increase the N2O and CO2 emission rates. Moreover, compared with the CK treatment, the B and PAM treatments could significantly decrease the cumulative emission of N2O (P<0.05), with a decline of 38.59% and 45.35%, respectively. The B and C treatments could significantly enhance the soil uptake of CH4 (P<0.05), and the cumulative absorption of CH4 increased 144.44% and 172.22%, respectively. The B and C treatment results were significantly different from the CK treatment based on the cumulative emission of CO2 (P<0.05), with a decrease of 25.40% and 22.21%, respectively. In general, compared with the CK treatment, the comprehensive warming potential of the B, C, and PAM treatments declined by 27.77%, 19.61%, and 12.16%, respectively. The greenhouse gas emission intensity of the B, C, and PAM treatments decreased by 35.20%, 26.65%, and 13.36%, respectively. The maize yield with the B and C treatments was significantly increased by 11.33% and 9.59%, respectively; and the economic budget of net ecosystem was increased by 16.15% and 12.65%, respectively (P<0.05). In summary, adding extra bentonite and biocarbon to the conventional fertilization was an effective agricultural measure for improving crop yield and reducing the global warming potential for the corn planting system in the Hetao irrigation area.


Assuntos
Agricultura/métodos , Fertilizantes , Gases de Efeito Estufa/análise , Solo/química , Dióxido de Carbono/análise , China , Metano/análise , Óxido Nitroso , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA