RESUMO
Maize opaque2 (o2) mutations are beneficial for endosperm nutritional quality but cause negative pleiotropic effects for reasons that are not fully understood. Direct targets of the bZIP transcriptional regulator encoded by o2 include pdk1 and pdk2 that specify pyruvate phosphate dikinase (PPDK). This enzyme reversibly converts AMP, pyrophosphate, and phosphoenolpyruvate to ATP, orthophosphate, and pyruvate and provides diverse functions in plants. This study addressed PPDK function in maize starchy endosperm where it is highly abundant during grain fill. pdk1 and pdk2 were inactivated individually by transposon insertions, and both genes were simultaneously targeted by endosperm-specific RNAi. pdk2 accounts for the large majority of endosperm PPDK, whereas pdk1 specifies the abundant mesophyll form. The pdk1- mutation is seedling-lethal, indicating that C4 photosynthesis is essential in maize. RNAi expression in transgenic endosperm eliminated detectable PPDK protein and enzyme activity. Transgenic kernels weighed the same on average as nontransgenic siblings, with normal endosperm starch and total N contents, indicating that PPDK is not required for net storage compound synthesis. An opaque phenotype resulted from complete PPDK knockout, including loss of vitreous endosperm character similar to the phenotype conditioned by o2-. Concentrations of multiple glycolytic intermediates were elevated in transgenic endosperm, energy charge was altered, and starch granules were more numerous but smaller on average than normal. The data indicate that PPDK modulates endosperm metabolism, potentially through reversible adjustments to energy charge, and reveal that o2- mutations can affect the opaque phenotype through regulation of PPDK in addition to their previously demonstrated effects on storage protein gene expression.
Assuntos
Endosperma/enzimologia , Metabolismo Energético/fisiologia , Proteínas de Plantas/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo , Zea mays/enzimologia , Endosperma/genética , Mutação , Proteínas de Plantas/genética , Piruvato Ortofosfato Diquinase/genética , Amido/biossíntese , Amido/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genéticaRESUMO
Isoamylase-type starch debranching enzymes (ISA) play important roles in starch biosynthesis in chloroplast-containing organisms, as shown by the strict conservation of both catalytically active ISA1 and the noncatalytic homolog ISA2. Functional distinctions exist between species, although they are not understood yet. Numerous plant tissues require both ISA1 and ISA2 for normal starch biosynthesis, whereas monocot endosperm and leaf exhibit nearly normal starch metabolism without ISA2. This study took in vivo and in vitro approaches to determine whether organism-specific physiology or evolutionary divergence between monocots and dicots is responsible for distinctions in ISA function. Maize (Zea mays) ISA1 was expressed in Arabidopsis (Arabidopsis thaliana) lacking endogenous ISA1 or lacking both native ISA1 and ISA2. The maize protein functioned in Arabidopsis leaves to support nearly normal starch metabolism in the absence of any native ISA1 or ISA2. Analysis of recombinant enzymes showed that Arabidopsis ISA1 requires ISA2 as a partner for enzymatic function, whereas maize ISA1 was active by itself. The electrophoretic mobility of recombinant and native maize ISA differed, suggestive of posttranslational modifications in vivo. Sedimentation equilibrium measurements showed recombinant maize ISA1 to be a dimer, in contrast to previous gel permeation data that estimated the molecular mass as a tetramer. These data demonstrate that evolutionary divergence between monocots and dicots is responsible for the distinctions in ISA1 function.
Assuntos
Arabidopsis/enzimologia , Isoamilase/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Western Blotting , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoamilase/química , Isoamilase/genética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mutação , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Amido/metabolismo , Espectrometria de Massas em Tandem , Zea mays/genéticaRESUMO
The maize (Zea mays) opaque5 (o5) locus was shown to encode the monogalactosyldiacylglycerol synthase MGD1. Null and point mutations of o5 that affect the vitreous nature of mature endosperm engendered an allelic series of lines with stepwise reductions in gene function. C(18:3)/C(18:2) galactolipid abundance in seedling leaves was reduced proportionally, without significant effects on total galactolipid content. This alteration in polar lipid composition disrupted the organization of thylakoid membranes into granal stacks. Total galactolipid abundance in endosperm was strongly reduced in o5(-) mutants, causing developmental defects and changes in starch production such that the normal simple granules were replaced with compound granules separated by amyloplast membrane. Complete loss of MGD1 function in a null mutant caused kernel lethality owing to failure in both endosperm and embryo development. The data demonstrate that low-abundance galactolipids with five double bonds serve functions in plastid membranes that are not replaced by the predominant species with six double bonds. Furthermore, the data identify a function of amyloplast membranes in the development of starch granules. Finally, the specific changes in lipid composition suggest that MGD1 can distinguish the constituency of acyl groups on its diacylglycerol substrate based upon the degree of desaturation.
Assuntos
Cloroplastos/metabolismo , Galactolipídeos , Galactosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Zea mays/química , Zea mays/enzimologia , Alelos , Amilopectina/química , Amilopectina/metabolismo , Cloroplastos/química , Cloroplastos/ultraestrutura , Endosperma/química , Endosperma/metabolismo , Galactolipídeos/química , Galactolipídeos/metabolismo , Galactosiltransferases/genética , Dados de Sequência Molecular , Mutação , Filogenia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plastídeos/química , Plastídeos/ultraestrutura , Plântula/anatomia & histologia , Plântula/genética , Plântula/metabolismo , Amido/biossíntese , Zea mays/anatomia & histologia , Zea mays/fisiologiaRESUMO
Conserved isoamylase-type starch debranching enzymes (ISAs), including the catalytic ISA1 and noncatalytic ISA2, are major starch biosynthesis determinants. Arabidopsis thaliana leaves require ISA1 and ISA2 for physiological function, whereas endosperm starch is near normal with only ISA1. ISA functions were characterized in maize (Zea mays) leaves to determine whether species-specific distinctions in ISA1 primary structure, or metabolic differences in tissues, are responsible for the differing ISA2 requirement. Genetic methods provided lines lacking ISA1 or ISA2. Biochemical analyses characterized ISA activities in mutant tissues. Starch content, granule morphology, and amylopectin fine structure were determined. Three ISA activity forms were observed in leaves, two ISA1/ISA2 heteromultimers and one ISA1 homomultimer. ISA1 homomultimer activity existed in mutants lacking ISA2. Mutants without ISA2 differed in leaf starch content, granule morphology, and amylopectin structure compared with nonmutants or lines lacking both ISA1 and ISA2. The data imply that both the ISA1 homomultimer and ISA1/ISA2 heteromultimer function in the maize leaf. The ISA1 homomultimer is present and functions in the maize leaf. Evolutionary divergence between monocots and dicots probably explains the ability of ISA1 to function as a homomultimer in maize leaves, in contrast to other species where the ISA1/ISA2 heteromultimer is the only active form.
Assuntos
Isoamilase/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Amido/metabolismo , Zea mays/enzimologia , Sequência de Aminoácidos , Cromatografia em Gel , Sequência Conservada , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoamilase/química , Isoamilase/genética , Dados de Sequência Molecular , Extratos Vegetais , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plastídeos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Amido/ultraestrutura , Zea mays/ultraestruturaRESUMO
This study characterized genetic interactions between the maize (Zea mays) genes dull1 (du1), encoding starch synthase III (SSIII), and isa2, encoding a noncatalytic subunit of heteromeric isoamylase-type starch-debranching enzyme (ISA1/ISA2 heteromer). Mutants lacking ISA2 still possess the ISA1 homomeric enzyme. Eight du1(-) mutations were characterized, and structural changes in amylopectin resulting from each were measured. In every instance, the same complex pattern of alterations in discontinuous spans of chain lengths was observed, which cannot be explained solely by a discrete range of substrates preferred by SSIII. Homozygous double mutants were constructed containing the null mutation isa2-339 and either du1-Ref, encoding a truncated SSIII protein lacking the catalytic domain, or the null allele du1-R4059. In contrast to the single mutant parents, double mutant endosperms affected in both SSIII and ISA2 were starch deficient and accumulated phytoglycogen. This phenotype was previously observed only in maize sugary1 mutants impaired for the catalytic subunit ISA1. ISA1 homomeric enzyme complexes assembled in both double mutants and were enzymatically active in vitro. Thus, SSIII is required for normal starch crystallization and the prevention of phytoglycogen accumulation when the only isoamylase-type debranching activity present is ISA1 homomer, but not in the wild-type condition, when both ISA1 homomer and ISA1/ISA2 heteromer are present. Previous genetic and biochemical analyses showed that SSIII also is required for normal glucan accumulation when the only isoamylase-type debranching enzyme activity present is ISA1/ISA heteromer. These data indicate that isoamylase-type debranching enzyme and SSIII work in a coordinated fashion to repress phytoglycogen accumulation.
Assuntos
Glucosiltransferases/metabolismo , Isoamilase/metabolismo , Zea mays/enzimologia , Cromatografia em Gel , Glucosiltransferases/genética , Isoamilase/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Zea mays/metabolismoRESUMO
Functions of isoamylase-type starch-debranching enzyme (ISA) proteins and complexes in maize (Zea mays) endosperm were characterized. Wild-type endosperm contained three high molecular mass ISA complexes resolved by gel permeation chromatography and native-polyacrylamide gel electrophoresis. Two complexes of approximately 400 kD contained both ISA1 and ISA2, and an approximately 300-kD complex contained ISA1 but not ISA2. Novel mutations of sugary1 (su1) and isa2, coding for ISA1 and ISA2, respectively, were used to develop one maize line with ISA1 homomer but lacking heteromeric ISA and a second line with one form of ISA1/ISA2 heteromer but no homomeric enzyme. The mutations were su1-P, which caused an amino acid substitution in ISA1, and isa2-339, which was caused by transposon insertion and conditioned loss of ISA2. In agreement with the protein compositions, all three ISA complexes were missing in an ISA1-null line, whereas only the two higher molecular mass forms were absent in the ISA2-null line. Both su1-P and isa2-339 conditioned near-normal starch characteristics, in contrast to ISA-null lines, indicating that either homomeric or heteromeric ISA is competent for starch biosynthesis. The homomer-only line had smaller, more numerous granules. Thus, a function of heteromeric ISA not compensated for by homomeric enzyme affects granule initiation or growth, which may explain evolutionary selection for ISA2. ISA1 was required for the accumulation of ISA2, which is regulated posttranscriptionally. Quantitative polymerase chain reaction showed that the ISA1 transcript level was elevated in tissues where starch is synthesized and low during starch degradation, whereas ISA2 transcript was relatively abundant during periods of either starch biosynthesis or catabolism.
Assuntos
Endosperma/enzimologia , Endosperma/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Isoamilase/metabolismo , Proteínas de Plantas/metabolismo , Multimerização Proteica , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Cromatografia em Gel , Endosperma/genética , Endosperma/ultraestrutura , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Germinação/genética , Glicosídeo Hidrolases/genética , Isoamilase/genética , Dados de Sequência Molecular , Mutação/genética , Extratos Vegetais , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/química , Amido/metabolismo , Amido/ultraestrutura , Zea mays/genéticaRESUMO
Appointment no-shows have a negative impact on patient health and have caused substantial loss in resources and revenue for health care systems. Intervention strategies to reduce no-show rates can be more effective if targeted to the subpopulations of patients with higher risk of not showing to their appointments. We use electronic health records (EHR) from a large medical center to predict no-show patients based on demographic and health care features. We apply sparse Bayesian modeling approaches based on Lasso and automatic relevance determination to predict and identify the most relevant risk factors of no-show patients at a provider level.
RESUMO
To elucidate the mechanisms of molecular regulations underlying primary dysmenorrhea (PD), we used our previously published mRNA expression profile of uterus from PD syndrome rats to construct protein-protein interactions (PPI) network via STRING Interactome. Consequently, 34 subnetworks, including a "continent" (Subnetwork 1) and 33 "islands" (Subnetwork 2-34) were generated. The nodes, with relative expression ratios, were visualized in the PPI networks and their connections were identified. Through path and module exploring in the network, the bridges were found from pathways of cellular response to calcium ion, SMAD protein signal transduction, regulation of transcription from RNA polymerase II promoter in response to stress and muscle stretch that were significantly enriched by the up-regulated mRNAs, to the cascades of cAMP metabolic processes and positive regulation of cyclase activities by the down-regulated ones. This link is mainly dependent on Fos/Jun - Vip connection. Our data, for the first time, report the PPI network analysis of differentially expressed mRNAs in the uterus of PD syndrome rats, to give insight into screening drugs and find new therapeutic strategies to relieve PD.
Assuntos
Dismenorreia/genética , Dismenorreia/metabolismo , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Transcriptoma , Útero/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Mapeamento de Interação de Proteínas , Transporte Proteico , RatosRESUMO
Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds.