Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Fungal Genet Biol ; 127: 23-34, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30822500

RESUMO

Short-chain acyl-CoA dehydrogenase (Scad) mediated ß-oxidation serves as the fastest route for generating essential energies required to support the survival of organisms under stress or starvation. In this study, we identified three putative SCAD genes in the genome of the globally destructive rice blast pathogen Magnaporthe oryzae, named as MoSCAD1, MoSCAD2, and MoSCAD3. To elucidate their function, we deployed targeted gene deletion strategy to investigate individual and the combined influence of MoSCAD genes on growth, stress tolerance, conidiation and pathogenicity of the rice blast fungus. First, localization and co-localization results obtained from this study showed that MoScad1 localizes to the endoplasmic reticulum (ER), MoScad2 localizes exclusively to the mitochondria while MoScad3 partially localizes to the mitochondria and peroxisome at all developmental stages of M. oryzae. Results obtained from this investigation showed that the deletion of MoSCAD1 and MoSCAD2 caused a minimal but significant reduction in the growth of ΔMoscad1 and ΔMoscad2 strains, while, growth characteristics exhibited by the ΔMoscad3 strain was similar to the wild-type strain. Furthermore, we observed that deletion of MoSCAD2 resulted in drastic reduction in conidiation, delayed conidia germination, triggered the development of abnormal appressorium and suppressed host penetration and colonization efficiencies of the ΔMoscad1 strain. This study provides first material evidence confirming the possible existence of ER ß-oxidation pathway in M. oryzae. We also infer that mitochondria ß-oxidation rather than peroxisomal and ER ß-oxidation play an essential role in the vegetative growth, conidiation, appressorial morphogenesis and progression of pathogenesis in M. oryzae.


Assuntos
Butiril-CoA Desidrogenase/genética , Proteínas Fúngicas/genética , Magnaporthe/genética , Magnaporthe/patogenicidade , Esporos Fúngicos/crescimento & desenvolvimento , Retículo Endoplasmático , Radicais Livres/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Magnaporthe/enzimologia , Mitocôndrias/metabolismo , Oryza/microbiologia , Oxirredução , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética
2.
New Phytol ; 219(2): 654-671, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676464

RESUMO

Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum.


Assuntos
Polaridade Celular , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Multimerização Proteica , Nexinas de Classificação/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Fúngicas/química , Fusarium/genética , Fusarium/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Genes Fúngicos , Microtúbulos/metabolismo , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Esporos Fúngicos/metabolismo , Relação Estrutura-Atividade , Vesículas Transportadoras/metabolismo , Virulência
3.
Environ Microbiol ; 19(10): 4301-4317, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28836715

RESUMO

Vps17 is a sorting nexin (SNX) and a component of the retromer, a protein complex mediating retrograde vesicle transport between endosomes and the trans-Golgi network. However, its role in the development and pathogenicity of filamentous fungi such as the rice blast fungus (Magnaporthe oryzae) remains unclear. We investigate the functional relationship between the SNX and the cargo-selective complex (CSC) of the fungal retromer by genetic analysis, live cell imaging and immunological assay. Our data show that the MoVps17 null mutation causes defects in growth, development and pathogenicity in M. oryzae. MoVps17 is localized to endosomes depending on the activity of phosphatidylinositol 3-kinase (PI3K), a key enzyme for fungal development and infection. Both PX and BAR domains of MoVps17 are essential for its endosomal localization and function. Furthermore, our yeast two-hybrid assays show that MoVps17 and MoVps5 can interact. Lastly, live cell imaging suggests that MoVps17 can regulate early endosome fusion and budding as well as endocytosis. Taken together, our results suggest that MoVps17 specifically functions as a retromer component with CSC and also plays a distinct role in the regulation of endosome dynamics during fungal development and plant infection.


Assuntos
Transporte Biológico/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Magnaporthe/patogenicidade , Oryza/microbiologia , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/genética , Transporte Biológico/fisiologia , Endocitose/genética , Endossomos/metabolismo , Proteínas Fúngicas/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases , Doenças das Plantas/microbiologia , Nexinas de Classificação/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
4.
Curr Genet ; 63(4): 685-696, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27909797

RESUMO

Carbon catabolite repression (CCR) is a common regulatory mechanism used by microorganisms to prioritize use of a preferred carbon source (usually glucose). The CreC WD40-repeat protein is a major component of the CCR pathway in Aspergillus nidulans. To clarify the function of the CreC ortholog from Magnaporthe oryzae in regulating gene expression important for pathogenesis, MoCreC was identified and genetically characterized. The vegetative growth rate of the MoCreC deletion mutant on various carbon sources was reduced. The MoCreC mutant produced fewer conidia and with about 60% of conidia having septation defects. Appressorium formation was impaired in the MoCreC mutant. Although some appressoria of the mutant could penetrate the leaf surface successfully, the efficiency of penetration and invasive growth of infection hyphae was reduced, resulting in attenuated virulence toward host plants. The CCR was defective as the mutant was more sensitive to allyl alcohol in the presence of glucose, and 2-deoxyglucose was unable to fully repress utilization of secondary carbon sources. qRT-PCR results indicated that the genes encoding cell wall degradation enzymes, such as ß-glucosidase, feruloyl esterase and exoglucanase, were upregulated in MoCreC mutant. Taken together, we conclude that MoCreC is a major regulator of CCR and plays significant roles in regulating growth, conidiation, and pathogenicity of M. oryzae.


Assuntos
Repressão Catabólica/genética , Magnaporthe/genética , Esporos Fúngicos/genética , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/patogenicidade , Proteínas Quinases/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Repetições WD40/genética
5.
Fungal Genet Biol ; 94: 79-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27387218

RESUMO

Septins are GTP-binding proteins that regulate cell polarity, cytokinesis and cell morphogenesis. Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating diseases worldwide. In this study, we have functionally characterized the core septins, Cdc3, Cdc10, Cdc11 and Cdc12 in F. graminearum. The loss of FgCdc3, FgCdc11, FgCdc12, but not FgCdc10, mutants showed significant reduction in growth, conidiation and virulence. Microscopic analyses revealed that all of them were involved in septum formation and nuclear division. Moreover, disruption of septin genes resulted in morphological defects in ascospores and conidia. Interestingly, conidia produced by ΔFgcdc3, ΔFgcdc11 and ΔFgcdc12 mutants exhibited deformation with interconnecting conidia in contrast to their parent wild-type strain PH-1 and the ΔFgcdc10 mutant that produced normal conidia. Using yeast two-hybrid assays, we determined the interactions among FgCdc3, FgCdc10, FgCdc11 and FgCdc12. Taken together, our results indicate that septins play important roles in the nuclear division, morphogenesis and pathogenicity in F. graminearum.


Assuntos
Divisão do Núcleo Celular , Fusarium/fisiologia , Septinas/fisiologia , Fusarium/genética , Fusarium/patogenicidade , Deleção de Genes , Genes Fúngicos , Morfogênese , Doenças das Plantas/microbiologia , Septinas/genética , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
6.
Fungal Genet Biol ; 67: 37-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24731806

RESUMO

Rho GTPases, acting as molecular switches, are involved in the regulation of diverse cellular functions. Rho GTPase activating proteins (Rho GAPs) function as negative regulators of Rho GTPases and are required for a variety of signaling processes in cell development. But the mechanisms underlying Rho GAPs in Rho-mediated signaling pathways in fungi are still elusive. There are eight RhoGAP domain-containing genes annotated in the Magnaporthe oryzae genome. To understand the function of these RhoGAP genes, we generated knockout mutants of each of the RhoGAP genes through a homologous recombination-based method. Phenotypic analysis showed that growth rate of aerial hyphae of the Molrg1 deletion mutant decreased dramatically. The ΔMolrg1 mutant showed significantly reduced conidiation and appressorium formation by germ tubes. Moreover, it lost pathogenicity completely. Deletion of another Rho GAP (MoRga1) resulted in high percentage of larger or gherkin-shaped conidia and slight decrease in conidiation. Appressorial formation of the ΔMoRga1 mutant was delayed significantly on hydrophobic surface, while the development of mycelial growth and pathogenicity in plants was not affected. Confocal fluorescence microscopy imaging showed that MoRga1-GFP localizes to septal pore of the conidium, and this localization pattern requires both LIM and RhoGAP domains. Furthermore, either deleting the LIM or RhoGAP domain or introducing an inactivating R1032A mutation in the RhoGAP domain of MoRga1 caused similar defects as the Morga1 deletion mutant in terms of conidial morphology and appressorial formation, suggesting that MoRga1 is a stage-specific regulator of conidial differentiation by regulating some specific Rho GTPases. In this regard, MoRga1 and MoLrg1 physically interacted with both MoRac1-CA and MoCdc42-CA in the yeast two-hybrid and pull-down assays, suggesting that the actions of these two GAPs are involved in MoRac1 and MoCdc42 pathways. On the other hand, six other putative Rho GAPs (MoRga2 to MoRga7) were dispensable for conidiation, vegetative growth, appressorial formation and pathogenicity, suggesting that these Rho GAPs function redundantly during fungal development. Taking together, Rho GAP genes play important roles in M. oryzae development and infectious processes through coordination and modulation of Rho GTPases.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Magnaporthe/patogenicidade , Oryza/microbiologia , Sequência de Aminoácidos , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/metabolismo , Dados de Sequência Molecular , Mutação , Esporos Fúngicos/crescimento & desenvolvimento
7.
EMBO J ; 26(22): 4709-19, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17948054

RESUMO

The POT1 (protection of telomeres) protein binds the single-stranded G-rich overhang and is essential for both telomere end protection and telomere length regulation. Telomeric binding of POT1 is enhanced by its interaction with TPP1. In this study, we demonstrate that mouse Tpp1 confers telomere end protection by recruiting Pot1a and Pot1b to telomeres. Knockdown of Tpp1 elicits a p53-dependent growth arrest and an ATM-dependent DNA damage response at telomeres. In contrast to depletion of Trf2, which activates ATM, removal of Pot1a and Pot1b from telomeres initiates an ATR-dependent DNA damage response (DDR). Finally, we show that telomere dysfunction as a result of Tpp1 depletion promotes chromosomal instability and tumorigenesis in the absence of an ATM-dependent DDR. Our results uncover a novel ATR-dependent DDR at telomeres that is normally shielded by POT1 binding to the single-stranded G-overhang. In addition, our results suggest that loss of ATM can cooperate with dysfunctional telomeres to promote cellular transformation and tumor formation in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/deficiência , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
8.
Mol Plant Pathol ; 22(2): 284-298, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350057

RESUMO

In eukaryotic cells, Rab GTPases and the retromer complex are important regulators of intracellular protein transport. However, the mechanistic relationship between Rab GTPases and the retromer complex in relation to filamentous fungal development and pathogenesis is unknown. In this study, we used Magnaporthe oryzae, an important pathogen of rice and other cereals, as a model filamentous fungus to dissect this knowledge gap. Our data demonstrate that the core retromer subunit MoVps35 interacts with the Rab GTPase MoYpt7 and they colocalize to the endosome. Without MoYpt7, MoVps35 is mislocalized in the cytoplasm, indicating that MoYpt7 plays an important role in the recruitment of MoVps35. We further demonstrate that the expression of an inactive MoYpt7-DN (GDP-bound form) mutant in M. oryzae mimicks the phenotype defects of retromer cargo-sorting complex (CSC) null mutants and blocks the proper localization of MoVps35. In addition, our data establish that MoVps17, a member of the sorting nexin family, is situated at the endosome independent of retromer CSC but regulates the sorting function of MoVps35 after its recruitment to the endosomal membrane by MoYpt7. Taken together, these results provide insight into the precise mechanism of retromer CSC recruitment to the endosome by MoYpt7 and subsequent sorting by MoVps17 for efficient conidiation and pathogenicity of M. oryzae.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ascomicetos/patogenicidade , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Mutação , Fenótipo , Esporos Fúngicos/fisiologia , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
9.
Rice (N Y) ; 12(1): 12, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825020

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is one of the most important crops that serves as staple food for ~ 50% of the human population worldwide. Some important agronomic traits that allow rice to cope with numerous abiotic and biotic stresses have been selected and fixed during domestication. Knowledge on how expression divergence of genes gradually contributes to phenotypic differentiation in response to biotic stress and their contribution to rice population speciation is still limited. RESULTS: Here, we explored gene expression divergence between a japonica rice cultivar Nipponbare and an indica rice cultivar 93-11 in response to invasion by the filamentous ascomycete fungus Magnaporthe oryzae (Pyricularia oryzae), a plant pathogen that causes significant loss to rice production worldwide. We investigated differentially expressed genes in the two cultivars and observed that evolutionarily conserved orthologous genes showed highly variable expression patterns under rice blast infection. Analysis of promoter region of these differentially expressed orthologous genes revealed the existence of cis-regulatory elements associated with the differentiated expression pattern of these genes in the two rice cultivars. Further comparison of these regions in global rice population indicated their fixation and close relationship with rice population divergence. CONCLUSION: We proposed that variation in the expression patterns of these orthologous genes mediated by cis-regulatory elements in the two rice cultivars, may constitute an alternative evolutionary mechanism that distinguishes these two genetically and ecologically divergent rice cultivars in response to M. oryzae infection.

10.
Front Plant Sci ; 9: 980, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135691

RESUMO

The oxidative degradation of lipids through lipid peroxidation processes results in the generation of free fatty acid radicals. These free radicals including reactive oxygen species (ROS) serve as a substrate for generating reactive aldehydes. The accumulation of free fatty acid radicals, ROS, and reactive aldehydes in cell compartments beyond physiological threshold levels tends to exert a damaging effect on proximal membranes and distal tissues. Living organisms deploy a wide array of efficient enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and aldehyde dehydrogenases (ALDHs) for scavenging reactive molecules and intermediates produced from membrane lipid peroxidation events. Although the contributions of SOD, CAT, and POD to the pathogenesis of microbial plant pathogens are well known, the influence of ALDH genes on the morphological and infectious development of plant pathogenic microbes is not well understood. In this study, we deployed RNA interference (RNAi) techniques and successfully silenced two putative family-four aldehyde dehydrogenase genes potassium-activated aldehyde dehydrogenase (MoKDCDH) and delta-1-pyrrorine-5-carboxylate dehydrogenase (MoP5CDH) in the rice blast pathogen Magnaporthe oryzae. The results obtained from the phenotypic analysis of individual knock-down strains showed that the RNAi-mediated inactivation of MoKDCDH and MoP5CDH triggered a significant reduction in conidiogenesis and vegetative growth of ΔMokdcdh and ΔMop5cdh strains. We further observed that downregulating the expression of MoKDCDH and MoP5CDH severely compromised the pathogenesis of the rice blast fungus. Also, the disruption of MoKDCDH and MoP5CDH M. oryzae undermined membrane integrity and rendered the mutant strains highly sensitive to membrane stress inducing osmolytes. However, the MoKDCDH and MoP5CDH knock-down strains generated in this study displayed unaltered cell wall integrity and thus suggested that family-four ALDHs play a dispensable role in enforcing cell wall-directed stress tolerance in M. oryzae. From these results, we deduced that family-four ALDHs play a conserved role in fostering membrane integrity in M. oryzae possibly by scavenging reactive aldehydes, fatty acid radicals, and other alcohol derivatives. The observation that downregulating the expression activities of MoKDCDH had a lethal effect on potential mutants further emphasized the need for comprehensive and holistic evaluation of the numerous ALDHs amassed by the rice blast fungus for their possible engagement as suitable targets as antiblast agents.

11.
ISME J ; 12(8): 1867-1878, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29568114

RESUMO

We examined the genomes of 100 isolates of Magnaporthe oryzae (Pyricularia oryzae), the causal agent of rice blast disease. We grouped current field populations of M. oryzae into three major globally distributed groups. A genetically diverse group, clade 1, which may represent a group of closely related lineages, contains isolates of both mating types. Two well-separated clades, clades 2 and 3, appear to have arisen as clonal lineages distinct from the genetically diverse clade. Examination of genes involved in mating pathways identified clade-specific diversification of several genes with orthologs involved in mating behavior in other fungi. All isolates within each clonal lineage are of the same mating type. Clade 2 is distinguished by a unique deletion allele of a gene encoding a small cysteine-rich protein that we determined to be a virulence factor. Clade 3 isolates have a small deletion within the MFA2 pheromone precursor gene, and this allele is shared with an unusual group of isolates we placed within clade 1 that contain AVR1-CO39 alleles. These markers could be used for rapid screening of isolates and suggest specific events in evolution that shaped these populations. Our findings are consistent with the view that M. oryzae populations in Asia generate diversity through recombination and may have served as the source of the clades 2 and 3 isolates that comprise a large fraction of the global population.


Assuntos
Magnaporthe/genética , Genes Fúngicos , Variação Genética , Genoma Fúngico , Genômica , Magnaporthe/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia
12.
FEMS Microbiol Lett ; 363(1): fnv223, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26607286

RESUMO

Fusarium graminearum is a filamentous fungal pathogen that causes wheat Fusarium head blight. In this study, we identified FgNoxR, a regulatory subunit of NADPH oxidases (Nox) in F. graminearum, and found that it plays an important role in the pathogenicity of F. graminearum. FgNoxR is localized on punctate structures throughout the cytoplasm in aerial hyphae while these structures tend to accumulate at or near the plasma membrane, septa and hyphal tips in germinated conidia. Deletion of the FgNOXR gene results in reduced conidiation and germination. Importantly, sexual development is totally abolished in the FgNOXR deletion mutant. In addition, the disease lesion of FgNOXR deletion mutant is limited to the inoculated spikelets of wheat heads. Finally, FgNoxR interacts with FgRac1 and FgNoxA, and all three proteins are required for female fertility. Taken together, our data indicate that FgNoxR contributes to conidiation, sexual reproduction and pathogenesis in F. graminearum.


Assuntos
Fusarium/patogenicidade , Genes Reguladores , NADP/metabolismo , Oxirredutases/metabolismo , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Deleção de Genes , Hifas/crescimento & desenvolvimento , Técnicas Microbiológicas , Microscopia , NADP/genética , Oxirredutases/genética , Mapeamento de Interação de Proteínas , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/genética , Triticum/microbiologia , Fatores de Virulência/genética
13.
Sci Rep ; 6: 25591, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151494

RESUMO

One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.


Assuntos
Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia , Variação Genética , Genoma Fúngico , Magnaporthe/genética , Magnaporthe/isolamento & purificação , Magnaporthe/patogenicidade , Nucleotídeos/genética , Oryza/microbiologia , Filogenia , Polimorfismo Genético , Análise de Componente Principal , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Virulência/genética
15.
Genes Dev ; 16(1): 33-45, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11782443

RESUMO

Recent reports suggest that a cross-talk exists between apoptosis pathways mediated by mitochondria and cell death receptors. In the present study, we report that mitochondrial events are required for apoptosis induced by the cell death ligand TRAIL (TNF-related apoptosis-inducing ligand) in human cancer cells. We show that the Bax null cancer cells are resistant to TRAIL-induced apoptosis. Bax deficiency has no effect on TRAIL-induced caspase-8 activation and subsequent cleavage of Bid; however, it results in an incomplete caspase-3 processing because of inhibition by XIAP. Release of Smac/DIABLO from mitochondria through the TRAIL-caspase-8-tBid-Bax cascade is required to remove the inhibitory effect of XIAP and allow apoptosis to proceed. Inhibition of caspase-9 activity has no effect on TRAIL-induced caspase-3 activation and cell death, whereas expression of the active form of Smac/DIABLO in the cytosol is sufficient to reconstitute TRAIL sensitivity in Bax-deficient cells. Our results show for the first time that Bax-dependent release of Smac/DIABLO, not cytochrome c, from mitochondria mediates the contribution of the mitochondrial pathway to death receptor-mediated apoptosis.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas/genética , Receptor Cross-Talk , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/genética , Caspases/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF , Células Tumorais Cultivadas , Proteína X Associada a bcl-2
16.
Cell ; 115(1): 61-70, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-14532003

RESUMO

Tumor necrosis factor (TNFalpha) receptor signaling can simultaneously activate caspase 8, the transcription factor, NF-kappaB and the kinase, JNK. While activation of caspase 8 is required for TNFalpha-induced apoptosis, and induction of NF-kappaB inhibits cell death, the precise function of JNK activation in TNFalpha signaling is not clearly understood. Here, we report that TNFalpha-mediated caspase 8 cleavage and apoptosis require a sequential pathway involving JNK, Bid, and Smac/DIABLO. Activation of JNK induces caspase 8-independent cleavage of Bid at a distinct site to generate the Bid cleavage product jBid. Translocation of jBid to mitochondria leads to preferential release of Smac/DIABLO, but not cytochrome c. The released Smac/DIABLO then disrupts the TRAF2-cIAP1 complex. We propose that the JNK pathway described here is required to relieve the inhibition imposed by TRAF2-cIAP1 on caspase 8 activation and induction of apoptosis. Further, our findings define a mechanism for crosstalk between intrinsic and extrinsic cell death pathways.


Assuntos
Apoptose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 8 , Caspase 9 , Caspases/metabolismo , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Quinase I-kappa B , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA