Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.242
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(9): 1968-1984.e20, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37040760

RESUMO

Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Histona-Lisina N-Metiltransferase/genética , Fígado/metabolismo , Mosaicismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
Nature ; 625(7995): 494-499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233619

RESUMO

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

3.
Immunity ; 53(4): 840-851.e6, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053332

RESUMO

Activating precursor B cell receptors of HIV-1 broadly neutralizing antibodies requires specifically designed immunogens. Here, we compared the abilities of three such germline-targeting immunogens against the VRC01-class receptors to activate the targeted B cells in transgenic mice expressing the germline VH of the VRC01 antibody but diverse mouse light chains. Immunogen-specific VRC01-like B cells were isolated at different time points after immunization, their VH and VL genes were sequenced, and the corresponding antibodies characterized. VRC01 B cell sub-populations with distinct cross-reactivity properties were activated by each immunogen, and these differences correlated with distinct biophysical and biochemical features of the germline-targeting immunogens. Our study indicates that the design of effective immunogens to activate B cell receptors leading to protective HIV-1 antibodies will require a better understanding of how the biophysical properties of the epitope and its surrounding surface on the germline-targeting immunogen influence its interaction with the available receptor variants in vivo.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos de Linfócito B/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Feminino , Células Germinativas/imunologia , Células HEK293 , Infecções por HIV/imunologia , Humanos , Masculino , Camundongos Transgênicos
4.
Nature ; 618(7967): 1041-1048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165191

RESUMO

Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.


Assuntos
Cromossomos Humanos , Cromotripsia , Micronúcleos com Defeito Cromossômico , Mitose , Humanos , Centrômero , Cromossomos Humanos/genética , DNA/genética , DNA/metabolismo , Variações do Número de Cópias de DNA , Interfase , Mitose/genética , Neoplasias/genética
5.
Immunity ; 50(3): 616-628.e6, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30850343

RESUMO

Humoral immunity depends on efficient activation of B cells and their subsequent differentiation into antibody-secreting cells (ASCs). The transcription factor NFκB cRel is critical for B cell proliferation, but incorporating its known regulatory interactions into a mathematical model of the ASC differentiation circuit prevented ASC generation in simulations. Indeed, experimental ectopic cRel expression blocked ASC differentiation by inhibiting the transcription factor Blimp1, and in wild-type (WT) cells cRel was dynamically repressed during ASC differentiation by Blimp1 binding the Rel locus. Including this bi-stable circuit of mutual cRel-Blimp1 antagonism into a multi-scale model revealed that dynamic repression of cRel controls the switch from B cell proliferation to ASC generation phases and hence the respective cell population dynamics. Our studies provide a mechanistic explanation of how dysregulation of this bi-stable circuit might result in pathologic B cell population phenotypes and thus offer new avenues for diagnostic stratification and treatment.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/fisiologia , NF-kappa B/imunologia , Animais , Células Produtoras de Anticorpos/imunologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Imunidade Humoral/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Genome Res ; 34(2): 310-325, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479837

RESUMO

In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.


Assuntos
Cromatina , Cromossomos , Animais , Suínos/genética , Cromatina/genética , Haplótipos , Cromossomos/genética , Genoma , Mamíferos/genética
7.
Nature ; 592(7853): 302-308, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762732

RESUMO

Our knowledge of copy number evolution during the expansion of primary breast tumours is limited1,2. Here, to investigate this process, we developed a single-cell, single-molecule DNA-sequencing method and performed copy number analysis of 16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The results show that breast tumours and cell lines comprise a large milieu of subclones (7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and genome doubling, there was a period of transient genomic instability followed by ongoing copy number evolution during the primary tumour expansion. By subcloning single daughter cells in culture, we show that tumour cells rediversify their genomes and do not retain isogenic properties. These data show that triple-negative breast cancers continue to evolve chromosome aberrations and maintain a reservoir of subclonal diversity during primary tumour growth.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Células Clonais/metabolismo , Células Clonais/patologia , Evolução Molecular , Sequência de Bases , Linhagem Celular Tumoral , Linhagem da Célula , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Instabilidade Genômica/genética , Humanos , Perda de Heterozigosidade/genética , Modelos Genéticos , Taxa de Mutação , Imagem Individual de Molécula , Análise de Célula Única , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
8.
Proc Natl Acad Sci U S A ; 121(29): e2307726121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976735

RESUMO

Watching movies is among the most popular entertainment and cultural activities. How do viewers react when a movie sequel increases racial minority actors in the main cast ("minority increase")? On the one hand, such sequels may receive better evaluations if viewers appreciate racially inclusive casting for its novel elements (the value-in-diversity perspective) and moral appeal (the fairness perspective on diversity). On the other hand, discrimination research suggests that if viewers harbor biases against racial minorities, sequels with minority increase may receive worse evaluations. To examine these competing possibilities, we analyze a unique panel dataset of movie series released from 1998 to 2021 and conduct text analysis of 312,457 reviews of these movies. Consistent with discrimination research, we find that movies with minority increase receive lower ratings and more toxic reviews. Importantly, these effects weaken after the advent of the Black Lives Matter (BLM) movement, especially when the movement's intensity is high. These results are reliable across various robustness checks (e.g., propensity score matching, random implementation test). We conceptually replicate the bias mitigation effect of BLM in a preregistered experiment: Heightening the salience of BLM increases White individuals' acceptance of racial minority increase in a movie sequel. This research demonstrates the power of social movements in fostering diversity, equality, and inclusion.


Assuntos
Filmes Cinematográficos , Racismo , Humanos , Racismo/psicologia , Minorias Étnicas e Raciais , Negro ou Afro-Americano/psicologia , Diversidade Cultural , Grupos Minoritários/psicologia
9.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39088390

RESUMO

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Assuntos
Cílios , Neurônios Dopaminérgicos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Neuroproteção , Doença de Parkinson , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Cílios/metabolismo , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Humanos , Camundongos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neuroproteção/genética , Mutação , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Masculino
10.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696471

RESUMO

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Assuntos
Proteína BRCA1 , Proteínas de Ciclo Celular , Camundongos Knockout , Oócitos , Oócitos/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Dupla , Pareamento Cromossômico/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Recombinação Genética , Recombinação Homóloga , Instabilidade Genômica
11.
Proc Natl Acad Sci U S A ; 121(25): e2305260121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857398

RESUMO

Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Centrossomo , Microtúbulos , Humanos , Centrossomo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Microtúbulos/metabolismo , Centríolos/metabolismo , Centríolos/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Mutação , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Proteínas Nucleares
12.
EMBO J ; 41(15): e110472, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35686621

RESUMO

Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule-cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.


Assuntos
Microtúbulos , Fuso Acromático , Interfase , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
13.
Genome Res ; 33(10): 1690-1707, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37884341

RESUMO

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Assuntos
Metagenoma , Microbiota , Ovinos/genética , Animais , Transcriptoma , Rúmen , Ruminantes/genética
14.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882667

RESUMO

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Assuntos
Cartilagem Articular , Animais , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Células-Tronco , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Condrogênese/genética
15.
PLoS Biol ; 21(10): e3002332, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847673

RESUMO

Thermosensation is critical for the survival of animals. However, mechanisms through which nutritional status modulates thermosensation remain unclear. Herein, we showed that hungry Drosophila exhibit a strong hot avoidance behavior (HAB) compared to food-sated flies. We identified that hot stimulus increases the activity of α'ß' mushroom body neurons (MBns), with weak activity in the sated state and strong activity in the hungry state. Furthermore, we showed that α'ß' MBn receives the same level of hot input from the mALT projection neurons via cholinergic transmission in sated and hungry states. Differences in α'ß' MBn activity between food-sated and hungry flies following heat stimuli are regulated by distinct Drosophila insulin-like peptides (Dilps). Dilp2 is secreted by insulin-producing cells (IPCs) and regulates HAB during satiety, whereas Dilp6 is secreted by the fat body and regulates HAB during the hungry state. We observed that Dilp2 induces PI3K/AKT signaling, whereas Dilp6 induces Ras/ERK signaling in α'ß' MBn to regulate HAB in different feeding conditions. Finally, we showed that the 2 α'ß'-related MB output neurons (MBONs), MBON-α'3 and MBON-ß'1, are necessary for the output of integrated hot avoidance information from α'ß' MBn. Our results demonstrate the presence of dual insulin modulation pathways in α'ß' MBn, which are important for suitable behavioral responses in Drosophila during thermoregulation under different feeding states.


Assuntos
Proteínas de Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Insulina/metabolismo , Corpos Pedunculados/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
16.
J Immunol ; 212(9): 1479-1492, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477617

RESUMO

During avian influenza virus (AIV) infection, host defensive proteins promote antiviral innate immunity or antagonize viral components to limit viral replication. UFM1-specific ligase 1 (UFL1) is involved in regulating innate immunity and DNA virus replication in mammals, but the molecular mechanism by which chicken (ch)UFL1 regulates AIV replication is unclear. In this study, we first identified chUFL1 as a negative regulator of AIV replication by enhancing innate immunity and disrupting the assembly of the viral polymerase complex. Mechanistically, chUFL1 interacted with chicken stimulator of IFN genes (chSTING) and contributed to chSTING dimerization and the formation of the STING-TBK1-IRF7 complex. We further demonstrated that chUFL1 promoted K63-linked polyubiquitination of chSTING at K308 to facilitate chSTING-mediated type I IFN production independent of UFMylation. Additionally, chUFL1 expression was upregulated in response to AIV infection. Importantly, chUFL1 also interacted with the AIV PA protein to inhibit viral polymerase activity. Furthermore, chUFL1 impeded the nuclear import of the AIV PA protein and the assembly of the viral polymerase complex to suppress AIV replication. Collectively, these findings demonstrate that chUFL1 restricts AIV replication by disrupting the viral polymerase complex and facilitating type I IFN production, which provides new insights into the regulation of AIV replication in chickens.


Assuntos
Vírus da Influenza A , Influenza Aviária , Interferon Tipo I , Ubiquitina-Proteína Ligases , Replicação Viral , Animais , Galinhas/genética , Imunidade Inata , Vírus da Influenza A/metabolismo , Vírus da Influenza A/fisiologia , Influenza Aviária/metabolismo , Nucleotidiltransferases , Replicação Viral/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Cell ; 146(6): 969-79, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21906795

RESUMO

Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory ß subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Transativadores/metabolismo , Acetilação , Restrição Calórica , Divisão Celular , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo
18.
Nature ; 579(7799): 427-432, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132707

RESUMO

In mammalian cells, mitochondrial dysfunction triggers the integrated stress response, in which the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in the induction of the transcription factor ATF41-3. However, how mitochondrial stress is relayed to ATF4 is unknown. Here we show that HRI is the eIF2α kinase that is necessary and sufficient for this relay. In a genome-wide CRISPR interference screen, we identified factors upstream of HRI: OMA1, a mitochondrial stress-activated protease; and DELE1, a little-characterized protein that we found was associated with the inner mitochondrial membrane. Mitochondrial stress stimulates OMA1-dependent cleavage of DELE1 and leads to the accumulation of DELE1 in the cytosol, where it interacts with HRI and activates the eIF2α kinase activity of HRI. In addition, DELE1 is required for ATF4 translation downstream of eIF2α phosphorylation. Blockade of the OMA1-DELE1-HRI pathway triggers an alternative response in which specific molecular chaperones are induced. The OMA1-DELE1-HRI pathway therefore represents a potential therapeutic target that could enable fine-tuning of the integrated stress response for beneficial outcomes in diseases that involve mitochondrial dysfunction.


Assuntos
Citosol/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Estresse Fisiológico , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/biossíntese , Fator 4 Ativador da Transcrição/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Citosol/enzimologia , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/química , Chaperonas Moleculares/metabolismo , Fosforilação , Ligação Proteica
19.
Mol Cell ; 70(2): 228-241.e5, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677491

RESUMO

The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca2+ channels and suggest a therapeutic strategy for treating mite-induced asthma.


Assuntos
Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Sinalização do Cálcio , Movimento Celular , Mastócitos/metabolismo , Mucosa Nasal/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pyroglyphidae/enzimologia , Receptores de Trombina/metabolismo , Serina Endopeptidases/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Antígenos de Dermatophagoides/efeitos adversos , Antígenos de Dermatophagoides/genética , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/efeitos adversos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Asma/imunologia , Asma/metabolismo , Células HEK293 , Humanos , Exposição por Inalação , Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico , Células Jurkat , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Mucosa Nasal/imunologia , Pyroglyphidae/genética , Pyroglyphidae/imunologia , Receptor PAR-2 , Receptores Acoplados a Proteínas G/metabolismo , Serina Endopeptidases/efeitos adversos , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia
20.
Mol Cell ; 71(6): 923-939.e10, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174292

RESUMO

The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore's microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex.


Assuntos
Proteínas Cromossômicas não Histona/ultraestrutura , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Centrômero/fisiologia , Proteína Centromérica A/metabolismo , Proteína Centromérica A/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA