Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 16148-16160, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820566

RESUMO

Functional assembly of nonlinear optical (NLO) motifs with a large optical anisotropy is vital to the development of advanced NLO and birefringent materials. In this work, we highlight that, in addition to heteroatomic NLO motifs, homoatomic anionic clusters formed by aggregated anions (S, Se, Te) exhibit diverse chain-, ring-, and cage-like chemical structures as well as one-, two-, and three-dimensional motif alignments. The rich structural chemistry enables homoatomic polychalcogenides (HAPCs) to exhibit asymmetric structural features and anisotropic optical properties, with great potential for NLO and birefringent performance. Focusing on totally 55 binary HAPCs A2Qn (n = 2, 3, 4, 5; A = Na, K, Rb, Cs; Q = S, Se, Te) and their ternary analogues, we employ the state-of-the-art first-principles approach to systematically investigate the modulation evolution of their NLO and birefringent properties. Remarkably, Rb2Te3 and Na2TeSe2 exhibit rarely colossal birefringence (>1.0@10 µm) and NLO effects (>20 × AgGaS2), much larger than conventional NLO chalcogenides. Na2Te3 presents the largest birefringence to date (∼3.48@1, 2.72@2, 2.34@10 µm), indicating the unique structural superiority of HAPC in terms of ultra-large birefringence. By mining the intrinsic mechanism, the HAPC anionic groups are identified as novel mid-infrared NLO "material genes", furnishing unique NLO and birefringent performance for the design of novel optoelectronic materials.

2.
J Am Chem Soc ; 146(14): 9975-9983, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466811

RESUMO

Oxides have attracted considerable attention owing to their potential for nonlinear optical (NLO) applications. Although significant progress has been achieved in optimizing the structural characteristics of primitives (corresponding to the simplest constituent groups, namely, cations/anions/neutral molecules) comprising the crystalline oxides, the role of the primitives' interaction in determining the resultant functional structure and optical properties has long been underappreciated and remains unclear. In this study, we employ a π-conjugated organic primitive confinement strategy to manipulate the interactions between primitives in antimonates and thereby significantly enhance the optical nonlinearity. Chemical bonds and relatively weak H-bonding interactions promote the formation of cis- and trans-Sb(III)-based dimer configurations in (C5H5NO)(Sb2OF4) (4-HPYSOF) and (C5H7N2)(Sb2F7) (4-APSF), respectively, resulting in very different second-harmonic generation (SHG) efficiencies and birefringences. In particular, 4-HPYSOF displays an exceptionally strong SHG response (12 × KH2PO4 at 1064 nm) and a large birefringence (0.513 at 546 nm) for a Sb(III)-based NLO oxide as well as a UV cutoff edge. Structural analyses and theoretical studies indicate that polarized ionic bond interactions facilitate the favorable arrangement of both the inorganic and organic primitives, thereby significantly enhancing the optical nonlinearity in 4-HPYSOF. Our findings shed new light on the intricate correlations between the interactions of primitives, inorganic primitive configuration, and SHG properties, and, more broadly, our approach provides a new perspective in the development of advanced NLO materials through the interatomic bond engineering of oxides.

3.
J Am Chem Soc ; 146(33): 23508-23516, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39126391

RESUMO

Second-harmonic-generation (SHG) switching is an emerging phenomenon with potential applications in bistable storage and optical switches while also serving as a sensitive probe for inversion-symmetry. Temperature-induced disorder-order phase transition has been proven to be a rational design strategy for achieving SHG bi-state switching; however, pressure-sensitive SHG switching via a disorder-order structural transition mechanism is rarely reported and lacks sensitivity and cyclicity as practical switching materials. Herein, we demonstrate the pressure-induced "dynamical disorder-order" phase transition as an effective strategy for triggering SHG and SHG switching in NH4Cl. The "dynamical disorder-order" phase transition of NH4Cl occurring at as low as 1 GPa is confirmed by comprehensive in situ high-pressure XRD, molecular vibrational spectra, and Brillouin scattering spectra. The pressure-induced SHG is responsive to a wide excitation wavelength region (800-1500 nm), and the "off-on" switching is reversible for up to 50 cycles, setting a record for pressure-driven switching materials. It is worth noting that when pressure is further increased to 14 GPa, NH4Cl exhibits another SHG "on-off" switching, which makes it the first triplet SHG "off-on-off" switching material. Molecular dynamics simulations reveal the key role of N-H···Cl hydrogen bonding in the pressure-induced "dynamic disorder-order" mechanism. Finally, we verified that chemical pressure and physical pressure can jointly regulate the SHG switching behavior of NH4X (X = Cl, Br). The pressure-driven "dynamic disorder-order" transition mechanism sheds light on the rational design of multistable SHG switching materials for photoswitches and information storage.

4.
J Am Chem Soc ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374498

RESUMO

The precise modulation of the spatial orientations and connection modes of primitives is vital for certain critically important optical functions for nonlinear optical (NLO) materials (specifically, second-harmonic generation (SHG) and optical bandgap); however, we are yet to achieve a sufficient level of control for the designed construction of efficient broadband NLO materials. Exploiting the changes in microscopic polarization that may result from dimensional increase, we propose herein a zero-dimensional (0D)-to-three-dimensional (3D) dimensionality-increase strategy to realize strong broadband SHG responses for the first time. The novel 3D pseudo diamond-like Zn(SCN)2 has been synthesized by removing SHG-inactive [NH4]+ counter cations and H2O molecules that are located between the adjacent discrete [Zn(SCN)4] building blocks within the 0D (NH4)2Zn(SCN)4·3H2O. The 0D-to-3D dimensionality engineering, proceeding from (NH4)2Zn(SCN)4·3H2O to Zn(SCN)2, results in significantly enhanced SHG responses and efficient broadband activity (8 × KH2PO4 @ 1064 nm, 4.18 eV bandgap for the former c.f. 2 × ß-BaB2O4 @ 380 nm, 30 × KH2PO4 @ 1064 nm, 2 × KTiOPO4 @ 2100 nm, 4.78 eV bandgap for the latter) from the UV to the NIR regions (SHG@300-1050 nm). Theoretical calculations and crystal structure analyses reveal that the coordination-bond-connected [Zn(SCN)4] building blocks within the diamond-like structure of Zn(SCN)2 are responsible for its giant broadband SHG responses.

5.
Small ; 20(14): e2308811, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988700

RESUMO

Nonlinear-optical (NLO) crystals require birefringent phase matching (BPM), particularly in the solar-blind ultraviolet (UV) (200-280 nm) and deep-UV (100-200 nm) regions. Achieving BPM requires optimization of optical dispersion along with having large birefringence. This requirement is especially critical for structures with low optical anisotropy, including classical phosphate UV-NLO crystals like KH2PO4 (KDP). However, there is a scarcity of in-depth theoretical analysis and general design strategies based on structural chemistry to optimize dispersion. This study presents findings from a simplified dielectric model that uncover two vital factors to micro-optimize transparent optical dispersion: effective mass (m*) of excited states and effective number (N*) of photo-responsive states. Smoothing of dispersion occurs as m* increases and N* decreases. First-principles analysis of deep-UV KBe2BO3F2-family structures is used to confirm the conciseness and validity of the model. It further proposes substituting K+ with Be2+ to decrease N* and increase m* while enlarging bandgap. This will lead to improved dispersion and an overall enhancement of KDP's BPM capability. The existing BeH3PO5 (BDP) is predicted to improve the shortest BPM wavelength for second-harmonic generation, from 251 nm in KDP to 201 nm in BDP. BDP's extension into the broader UV solar-blind waveband fully supports the proposed optimization strategy.

6.
Small ; 20(40): e2404155, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38855996

RESUMO

Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep-ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML-BPOH) is reported. DFT analyses suggest a low cleavage energy (≈45 meV per atom) from a naturally existed bulk-BPOH material, indicating feasible exfoliation. This novel 2D material exhibits excellent properties including an ultrawide bandgap (Eg) of 7.84 eV, and a strong second-order nonlinear susceptibility ( d b u l k e f f $d_{bulk}^{eff}$ = 0.43 pm V-1), which is comparable to that of benchmark bulk-KBBF crystal (d16 = 0.45 pm V-1). The wide bandgap and large SHG effect of ML-BPOH are mainly derived from the (PO2H2)- tetrahedron. Notably, ML-BPOH exhibits an outstanding 50% variation in dsheet under minor stress stimuli (±3%) due to rotation of structurally rigid (PO2H2)- tetrahedron. This indicates significant potential for application in material deformation monitoring.

7.
Small ; 20(17): e2308470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105598

RESUMO

Two-photon excited fluorescence imaging requires high-performance two-photon absorption (TPA) active materials, which are commonly intramolecular charge transfer systems prepared by traditional chemical synthesis. However, this typically needs harsh conditions and new methods are becoming crucial. In this work, based on a collaborative intermolecular charge transfer (inter-CT) strategy, three centimeter-sized organic TPA cocrystals are successfully obtained. All three cocrystals exhibit a mixed stacking arrangement, which can effectively generate inter-CT between the donor and acceptor. The ground and excited state characterizations compare their inter-CT ability: 1,2-BTC > 2D-BTC > 1D-BTC. Transient absorption spectroscopy detects TCNB•-, indicating that the TPA mechanism arises from molecular polarization caused by inter-CT. Meanwhile, 1,2-BTC exhibits the highest excited-state absorption and the longest excited-state lifetime, suggesting a stronger TPA response. First-principles calculations also confirm the presence of inter-CT interactions, and the significant parameter Δµ which can assess the TPA capability indicates that inter-CT enhances the TPA response. Besides, cocrystals also demonstrate excellent water solubility and two-photon excited fluorescence imaging capabilities. This research not only provides an effective method for synthesizing TPA crystal materials and elucidates the connection between inter-CT ability and TPA property but also successfully applies them in the fields of multi-photon fluorescence bioimaging.

8.
Small ; 20(2): e2305473, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688298

RESUMO

Traditional nonlinear optical (NLO) crystals are exclusively limited to ionic crystals with π-conjugated groups and it is a great challenge to achieve a subtle balance between second-harmonic generation, bandgap, and birefringence for them, especially in the deep-UV spectrum region (Eg  > 6.20 eV). Herein, a non-π-conjugated molecular crystal, NH3 BH3 , which realizes such balance with a large second-harmonic generation response (2.0 × KH2 PO4 at 1064 nm, and 0.45 × ß-BaB2 O4 at 532 nm), deep-UV transparency (Eg > 6.53 eV), and moderate birefringence (Δn = 0.056@550 nm) is reported. As a result, NH3 BH3 exhibits a large quality factor of 0.32, which is evidently larger than those of non-π-conjugated sulfate and phosphate ionic crystals. Using an unpolished NH3 BH3 crystal, effective second-harmonic generation outputs are observed at different wavelengths. These attributes indicate that NH3 BH3 is a promising candidate for deep-UV NLO applications. This work opens up a new door for developing high-performance deep-UV NLO crystals.

9.
Inorg Chem ; 63(11): 5220-5226, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38456453

RESUMO

Wide-band gap binary semiconductors find extensive use in advanced optoelectronic devices due to their exceptional electronic, optical, and defect properties. This paper systematically investigates the linear and nonlinear optical and defect properties of two P3N5 structures as wide-band gap binary semiconductors and evaluates their responses to external pressure modulation using first-principles calculations. The research demonstrates that the high-pressure phase of P3N5 has a broad UV solar-blind band gap (Eg ∼ 4.9 eV) and displays highly anisotropic optical linearity and nonlinearity, including a significant second harmonic generation effect (d24 ∼ 1.8 pm/V) and large birefringence (Δn ∼ 0.12), exhibiting a relatively small change in amplitude against pressure due to unique lattice incompressibility. This material enables birefringent phase-matched second harmonic coherent output at a much shorter wavelength (down to 286 nm) than currently known wide-band gap binary semiconductors such as SiC, GaN, AlN, Ga2O3, and Si3N4. An in-depth study of the defect properties of P3N5 in relation to its UV optical properties is also provided. These results are important references for utilizing the optoelectronic functions of this binary material system.

10.
Inorg Chem ; 63(28): 12894-12900, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38938112

RESUMO

The latent value of nonlinear optical (NLO) crystals applied in solid-state laser equipment necessitates the development of applicable strategies for constructing noncentrosymmetric (NCS) crystals. By modulating the synthetic temperature and pressure to achieve the rearrangement of [TeO3]2- groups, a new NCS tellurium tungstate, ß-K2TeW3O12 (ß-KTW), with a strong second harmonic generation (SHG) response was synthesized based on its centrosymmetric polymorphic phase α-K2TeW3O12 (α-KTW). Computational calculation reveals that the large SHG response of ß-KTW (15 × KH2PO4@1064 and 1.5 × KTiOPO4@1950 nm) could be attributed to the uniform arrangement of the NLO-active [TeO3]2- and [WO6]6- groups. ß-KTW also exhibits enlarged birefringence (0.196@1064 nm) and a high laser damage threshold (42.3 MW cm-2), showing great potential as a nonlinear crystalline material. This work also provides a new route for the construction of NLO crystals based on centric structure, i.e., reverse pressure regulation.

11.
Inorg Chem ; 63(42): 19916-19923, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39377557

RESUMO

The band gap is one of the significant parameters for nonlinear optical (NLO) materials, which is the key factor in their application band in laser technology. This study reports the synthesis of two rare-earth selenite NLO crystals, namely, RE(HSeO3)(SeO3)(H2O)·(H2O) (RE = Y, Gd), utilizing the hydrothermal technique. The two compounds are isostructural, and both belong to the orthorhombic chiral space group of P212121 and possess three-dimensional structures consisting of two-dimensional rare-earth selenite layers connected by hydrogen bonds (O-H··O). These two compounds exhibit a moderate second harmonic generation intensity of 0.5/0.8 × KDP and wide energy band gaps reaching 4.8 eV. Comprehensive density functional theory analyses based on first-principles were carried out to unravel the relationship between the structural and corresponding properties. This work provides an approach for band gap enlargement in rare-earth selenite systems and is beneficial to the design of future NLO materials.

12.
Inorg Chem ; 63(38): 17907-17913, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39256055

RESUMO

In modern optics, birefringent materials that can manipulate light polarization play important roles in lasers and information fields. The search for ultraviolet (UV) crystals with large birefringence is the focus of attention in the field of optical materials. In this work, we synthesized two birefringent crystals, C2H12N6C4O4·2H2O and Na2C4O4·3H2O, containing planar π-conjugated [C4O4]2- groups. Attributed to the large structural anisotropy and relatively ordered arrangement of the [C4O4]2- groups, C2H12N6C4O4·2H2O and Na2C4O4·3H2O possess large birefringence of 0.20-0.21 at 1064 nm. Meanwhile, they exhibit short ultraviolet cutoff edges at about 280-300 nm, corresponding to the large band gaps of 4.35 and 4.24 eV, respectively. Using structural analysis and first-principles calculations, the origins of such large birefringence are investigated and discussed. This work provides two potential UV birefringent crystals and prompts the search for novel birefringent materials.

13.
Inorg Chem ; 63(9): 4412-4418, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38381086

RESUMO

Due to the flexible structural tunability and excellent photoelectric performance, hybrid organic-inorganic metal halides (OIMHs) have attracted intensive attention and become a hot topic in the field of materials. It is important and necessary to explore new OIMHs and study their structure-property relationship. In this work, a new lead-free OIMH, (C5N2H14Cl)GeCl3, is synthesized by the combination of hydrothermal and solution methods. This compound features a zero-dimensional structure composed of inorganic [GeCl3]- trigonal pyramids surrounded by isolated Cl- anions and organic (C5N2H14)2+ cations. Preliminary characterization and first-principles calculations are performed to study its basic optical properties. Interestingly, (C5N2H14Cl)GeCl3 shows weak blue emission under ultraviolet excitation, and the intrinsic mechanism is discussed.

14.
Inorg Chem ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39454075

RESUMO

Optoelectronic materials with excellent birefringent properties are of significant importance in the fields of optical communications and laser technology. Recently, rare earth (RE) chalcogenides with anisotropic [RESn] groups have been proven to be high-performance infrared birefringent materials. Herein, we demonstrate that the addition of planar groups can further increase the birefringence in RE chalcogenides, as realized by incorporating planar [AgS3] groups into the RE-I-IV-S4 family for the first time. The newly obtained LaAgSiS4 compound shows higher polarity anisotropy than its homologue LaLiSiS4 and LaKSiS4, which resulted in a larger birefringence (0.12@600 nm) at least twice as large as that of the latter two compounds (0.05/0.06@600 nm). The structure-property relationship of LaAgSiS4 was investigated through structural analysis and first-principles calculations. The results indicate that the increased optical birefringence in LaAgSiS4 originates from the synergic effects of the distorted [LaSn] polyhedra and planar [AgS3] triangles. This work provides an effective strategy for enhancing optical birefringence in IR chalcogenides.

15.
Inorg Chem ; 63(21): 9720-9725, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38757704

RESUMO

High-performance nonlinear-optical (NLO) crystals need to simultaneously meet multiple basic and conflicting performance requirements. Here, by using a partial chemical substitution strategy, the first noncentrosymmetric (NCS) PbBeB2O5 crystal with a BeB2O8 group was synthesized, exhibiting a two-dimensional [BeB2O5]∞ layer constructed by interconnecting BeB2O8 groups and bridged PbO4 with an active lone pair. The crystal shows a promising UV NLO functional feature, including a strong SHG effect of 3.5 × KDP (KH2PO4), large birefringence realizing phase matchability in the whole transparency region from 246 to 2500 nm, a short UV absorption edge of 246 nm, and single-crystal easy growth. Remarkably, theoretical studies reveal that the BeB2O8 group has high nonlinear activity, which could stimulate the discovery of a series of excellent NLO beryllium borates.

16.
Inorg Chem ; 63(21): 10042-10049, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38747508

RESUMO

Phase transitions can change the crystal structure and modify the physical properties of crystals. In this work, we investigate the phase transition behavior in BaGa4Se7, an important middle infrared (mid-IR) nonlinear optical (NLO) crystal, in the temperature range from room temperature to 1173 K. Interestingly, the BaGa4Se7 crystal undergoes a reversible ferroelastic phase transition at T = 528 K, resulting in the presence of a newly discovered phase (γ-phase) at the higher temperature. The experimental temperature dependence of optical birefringence, as well as the first-principles birefringence and NLO coefficients, reveals that the γ-phase exhibits larger birefringence and better NLO properties compared with those of the low-temperature phase (α-phase). This work demonstrates that phase-transition-induced structural modification can improve the mid-IR NLO properties, which would provide an effective avenue to obtain materials with good optoelectronic performance.

17.
Angew Chem Int Ed Engl ; 63(7): e202318401, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153195

RESUMO

Zero area compressibility (ZAC) is an extremely rare mechanical response that exhibits an invariant two-dimensional size under hydrostatic pressure. All known ZAC materials are constructed from units in two dimensions as a whole. Here, we propose another strategy to obtain the ZAC by microscopically orthogonal-braiding one-dimensional zero compressibility strips. Accordingly, ZAC is identified in a copper-based compound with a planar [CuO4 ] unit, Cu2 GeO4 , that possesses an area compressibility as low as 1.58(26) TPa-1 over a wide pressure range from ≈0 GPa to 21.22 GPa. Based on our structural analysis, the subtle counterbalance between the shrinkage of [CuO4 ] and the expansion effect from the increase in the [CuO4 ]-[CuO4 ] dihedral angle attributes to the ZAC response. High-pressure Raman spectroscopy, in combination with first-principles calculations, shows that the electron transfer from in-plane bonding dx 2 -y 2 to out-of-plane nonbonding dz 2 orbitals within copper atoms causes the counterintuitive extension of the [CuO4 ]-[CuO4 ] dihedral angle under pressure. Our study provides an understanding on the pressure-induced structural evolution of copper-based oxides at an electronic level and facilitates a new avenue for the exploration of high-dimensional anomalous mechanical materials.

18.
Angew Chem Int Ed Engl ; 63(10): e202318107, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38116843

RESUMO

Considerable effort has been invested in the development of non-centrosymmetric (NCS) inorganic solids for ferroelectricity-, piezoelectricity- and, particularly, optical nonlinearity-related applications. While great progress has been made, a persistent problem is the difficulty in constructing NCS materials, which probably stems from non-directionality and unsaturation of the ionic bonds between metal counter-cations and covalent anionic modules. We report herein a secondary-bond-driven approach that circumvents the cancellation of dipole moments between adjacent anionic modules that has plagued second-harmonic generation (SHG) material design, and which thereby affords a polar structure with strong SHG properties. The resultant first NCS counter-cation-free iodate, VO2 (H2 O)(IO3 ) (VIO), a new class of iodate, crystallizes in a polar lattice with ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] zigzag chains connected by weak hydrogen bonds and intermolecular forces. VIO exhibits very large SHG responses (18 × KH2 PO4 @ 1200 nm, 1.5 × KTiOPO4 @ 2100 nm) and sufficient birefringence (0.184 @ 546 nm). Calculations and crystal structure analysis attribute the large SHG responses to consistent polarization orientations of the ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] chains controlled by secondary bonds. This study highlights the advantages of manipulating the secondary bonds in inorganic solids to control NCS structure and optical nonlinearity, affording a new perspective in the development of high-performance NLO materials.

19.
Angew Chem Int Ed Engl ; 63(28): e202403328, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662352

RESUMO

Solid-state structures with the superhalogen [BO2]- have thus far only been observed with a few compounds whose syntheses require high reaction temperatures and complicated procedures, while their optical properties remain almost completely unexplored. Herein, we report a facile, energy-efficient synthesis of the first [BO2]-based deep-ultraviolet (deep-UV) transparent oxide K9[B4O5(OH)4]3(CO3)(BO2) ⋅ 7H2O (KBCOB). Detailed structural characterization and analysis confirm that KBCOB possesses a rare four-in-one three-dimensional quasi-honeycomb framework, with three π-conjugated anions ([BO2]-, [BO3]3-, and [CO3]2-) and one non-π-conjugated anion ([BO4]5-) in the one crystal. The evolution from the traditional halogenated nonlinear optical (NLO) analogues to KBCOB by superhalogen [BO2]- substitution confers deep-UV transparency (<190 nm), a large second-harmonic generation response (1.0×KH2PO4 @ 1064 nm), and a 15-fold increase in birefringence. This study affords a new route to the facile synthesis of functional [BO2]-based oxides, paving the way for the development of next-generation high-performing deep-UV NLO materials.

20.
Angew Chem Int Ed Engl ; 63(20): e202403062, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421901

RESUMO

The highly strained, phenylene-derived organic cages are typically regarded as very rigid entities, yet their deformation potential and supramolecular properties remain underexplored. Herein, we report a pliable conjugated phenylene nanocage by synergistically merging rigid and flexible building blocks. The anisotropic cage molecule contains branched phenylene chains capped by a calix[6]arene moiety, the delicate conformational changes of which endow the cage with a remarkably deformable cavity. When complexing with fullerene guests, the cage showcases excellent guest-adaptivity, with its cavity volume capable of swelling by as much as 85 %.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA