Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Small ; : e2403553, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845013

RESUMO

Eumelanin, a natural, biocompatible, and biodegradable photothermal agent derived from biomass, has attracted increasingly considerable attention due to its outstanding photothermal conversion efficiency. Unfortunately, its tendency to aggregate in flexible non-polar polymers, owing to its abundant polar groups on the surface, severely restricted the application of eumelanin in photothermal composite field. Herein, a feasible strategy is proposed to disperse eumelanin in non-polar rubber matrix via in situ generation of Zinc dimethacrylate (ZDMA). The graft-polymerization of ZDMA promotes the interfacial compatibility between styrene butadiene rubber (SBR) and eumelanin, achieving a uniform dispersion of eumelanin in SBR. The rubber composite exhibits a considerable tensile strength of 11.4 MPa, acceptable elongation at break of 146%, and outstanding photothermal conversion efficiency of up to 75.2% with only 1 wt% of eumelanin. Furthermore, based on the easy-processing of SBR matrix, the composite is treated with a sandpaper template technique and sprayed with trimethoxy(1H,1H,2H,2H-perfluorodecyl)silane (PFDTMS) to endow the material with near superhydrophobicity (water contact angle of 147.9°) capacity. Hydrophobicity provides excellent icing resistance, with droplet surfaces extending more than twice as long to freeze. Moreover, this hydrophobic photothermal material exhibits remarkable anti-frosting, de-frosting, and de-icing capabilities.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38466061

RESUMO

Background: In recent years, Tiaoshen acupuncture in Traditional Chinese Medicine (TCM) has been employed for treating patients with insomnia, but the clinical efficacy remains to be substantiated. Objective: To assess the efficacy and safety of acupuncture in treating insomnia using the Tiaoshen method in TCM. Design: A systematic review and meta-analysis was conducted. Setting: The research was conducted in Shenzhen. Methods: Electronic databases, including Chinese National Knowledge Infrastructure (CNKI), Wanfang, SinoMed, Weipu, PubMed, Web of Science, EMBASE, and Cochrane databases, were retrieved up to September 15, 2023. Randomized controlled trials (RCTs) meeting inclusion criteria were screened. Quality assessment of included articles was performed using the Cochrane Risk of Bias tool. Valid data were then extracted and analyzed via meta-analysis using Review Manager 5.3. The study was registered in the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 2023100051. Results: A total of 13 articles were included, comprising 849 patients with insomnia (diagnosed as chronic insomnia or primary insomnia). Meta-analysis results indicated that acupuncture with the Tiaoshen method could decrease the Pittsburgh Sleep Quality Index (PSQI) score [RR=-3.03, 95% CI (-3.73, -2.33), P < .00001], hyperarousal (HAS) scale score [RR=-7.75, 95% CI (-12.29, -3.22), P < .0008], and fatigue scale-14 (FS-14) score [RR=-2.11, 95% CI (-2.83, -1.38), P < .00001] compared with superficial acupuncture on non-effective acupoints or conventional acupuncture manipulation. Additionally, acupuncture with the Tiaoshen method demonstrated safety. However, the funnel plot suggested the presence of publication bias. Conclusions: Acupuncture with the Tiaoshen method could enhance sleep quality and efficiency. Due to the low quality of some literature, further high-quality RCTs are needed to improve the level of evidence.

3.
Nano Lett ; 22(5): 2140-2146, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35050632

RESUMO

Curved fluidic channels with a circular cross-section play an important role in biology, chemistry, and medicine. However, in nanofluidics, a problem that is largely unsolved is the lack of an effective fabrication method for curved circular nanotubes (10-1000 nm). In this work, an electron-beam-induced self-assembly process was applied to achieve fine curved nanostructures for the realization of nanofluidic devices. The diameter of the tube could be precisely controlled by an atomic layer deposition process. Fluid transported through the nanochannels was verified and characterized using a dark-field microscope under an optical diffraction limit size. The fluid flow demonstrates that the liquid's evaporation (vapor diffusion) in the nanochannel generates compressed vapor, which pumps the liquid and pushes it forward, resulting in a directional flow behavior in the ∼100 nm radius of tubes. This phenomenon could provide a useful platform for the development of diverse nanofluidic devices.


Assuntos
Nanoestruturas , Nanotubos , Transporte Biológico , Nanoestruturas/química , Nanotecnologia/métodos
4.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365851

RESUMO

Two-dimensional (2D) perovskite have been widely researched for solar cells, light-emitting diodes, photodetectors because of their excellent environmental stability and optoelectronic properties in comparison to three-dimensional (3D) perovskite. In this study, we demonstrate the high response of 2D-(PEA)2PbBr4 perovskite of the horizontal vapor sensor was outstandingly more superior than 3D-MAPbBr3 perovskite. 2D transverse perovskite layer have the large surface-to-volume ratio and reactive surface, with the charge transfer mechanism, which was suitable for vapor sensing and trapping. Thus, 2D perovskite vapor sensors demonstrate the champion current response ratio R of 107.32 under the ethanol vapors, which was much faster than 3D perovskite (R = 2.92).

5.
Biochem Biophys Res Commun ; 553: 119-125, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33765556

RESUMO

Excessive activation of inflammation in chondrocyte has been considered to be a major reason cause of cellular death and degeneration in osteoarthritis (OA) development. The NLRP3 inflammasome-mediated pyroptosis pathway is closely related to inflammation regulation. This research was conducted to confirm whether NLRP3 expression and activity are impacted in the development of OA and to detect the role of CY-09, a selective and direct inhibitor of NLRP3 in the in vitro and in vivo models of OA. Our findings corroborated that the expression of NLRP3 is stimulated in OA cartilage. CY-09 can maintain extracellular matrix (ECM) homeostasis and regulate inflammation in TNF-α treated chondrocytes via inhibition of NLRP3 inflammasome-mediated pyroptosis. Moreover, the chondrocyte protective effects of CY-09 were further confirmed in vivo in a DMM-induced OA model. In conclusion, our research indicates that experimental OA activated the NLRP3 activity, and pharmacological inhibition of NLRP3 inflammasome activation by CY-09 protects chondrocytes against inflammation and attenuates OA development.


Assuntos
Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Substâncias Protetoras/farmacologia , Piroptose/efeitos dos fármacos , Tiazolidinas/farmacologia , Tionas/farmacologia , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Feminino , Homeostase/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/patologia , Osteoartrite/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia
6.
Nano Lett ; 20(9): 6697-6705, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32808792

RESUMO

Plasmonic sensors are commonly defined on two-dimensional (2D) surfaces with an enhanced electromagnetic field only near the surface, which requires precise positioning of the targeted molecules within hotspots. To address this challenge, we realize segmented nanocylinders that incorporate plasmonic (1-50 nm) gaps within three-dimensional (3D) nanostructures (nanocylinders) using electron irradiation triggered self-assembly. The 3D structures allow desired plasmonic patterns on their inner cylindrical walls forming the nanofluidic channels. The nanocylinders bridge nanoplasmonics and nanofluidics by achieving electromagnetic field enhancement and fluid confinement simultaneously. This hybrid system enables rapid diffusion of targeted species to the larger spatial hotspots in the 3D plasmonic structures, leading to enhanced interactions that contribute to a higher sensitivity. This concept has been demonstrated by characterizing an optical response of the 3D plasmonic nanostructures using surface-enhanced Raman spectroscopy (SERS), which shows enhancement over a 22 times higher intensity for hemoglobin fingerprints with nanocylinders compared to 2D nanostructures.


Assuntos
Ouro , Nanoestruturas , Campos Eletromagnéticos , Análise Espectral Raman
7.
Molecules ; 26(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34946507

RESUMO

In this study, a magnetic solid-phase extraction (MSPE) method coupled with High-Performance Liquid Chromatography Mass Spectrometry (HPLC-MS/MS) for the determination of illegal basic dyes in food samples was developed and validated. This method was based on Magnetic sulfonated reduced graphene oxide (M-S-RGO), which was sensitive and selective to analytes with structure of multiaromatic rings and negatively charged ions. Several factors affecting MSPE efficiency such as pH and adsorption time were optimized. Under the optimum conditions, the calibration curves exhibited good linearity, ranging from 5 to 60 µg/g with correlation coefficients >0.9950. The limits of detection of 16 basic dyes were in the range of 0.01-0.2 µg/L. The recoveries ranged from 70% to 110% with RSD% < 10%. The results indicate that M-S-RGO is an efficient and selective adsorbent for the extraction and cleanup of basic dyes. Due to the MSPE procedures, matrix effect and interference were eliminated in the analysis of HPLC-MS/MS without the matrix-matched standards. Thus, validation data showed that the proposed MSPE-HPLC-MS/MS method was rapid, efficient, selective, and sensitive for the determination of illegal basic dyes in foods.


Assuntos
Análise de Alimentos , Corantes de Alimentos/análise , Contaminação de Alimentos/análise , Grafite/química , Extração em Fase Sólida , Ácidos Sulfônicos/química , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos , Espectrometria de Massas em Tandem
8.
Appl Opt ; 57(30): 9040-9045, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30461892

RESUMO

We demonstrated a tunable structural color filter based on an asymmetric Fabry-Perot cavity employing germanium antimony tellurium alloy Ge2Sb2Te5 (GST) as a switchable ultrathin lossy layer. The color tunability and switch mechanism of our designed structure were investigated by both simulation and analytical approaches. Both numerical simulations and analytical results show that the tunable reflective colors can be generated through the reversible phase transition of GST from amorphous to crystalline. Additionally, the generated colors possess high brightness, high saturation, and a wide gamut. Our designed structure will inspire phase-transition-based systems' potential applications in colorimetric sensing, smart windows, full-color printing and displays, anti-counterfeiting, and data encryption.

9.
World J Urol ; 33(12): 2115-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25910476

RESUMO

PURPOSE: Construction of a neourethra is always considered to be a difficult part in phalloplasty, especially for the female-to-male (FTM) transsexual patients. We report our experience with prefabricated pars pendulans urethrae using vaginal mucosal graft for phalloplasty in FTM transsexuals. MATERIALS AND METHODS: We retrospectively reviewed notes on the 22 FTM patients treated with pedicled-flap phalloplasty with prefabricated pars pendulans urethrae using vaginal mucosal graft between January 2008 and December 2012. Surgical outcome, urological function, and complications were recorded. Histological difference between normal mucosa and skin, and pathological changes of vaginal mucosal graft were also observed. RESULTS: All the reconstructive penis survived, and patients could void in a standing position finally at a median follow-up of 25.4 ± 6.0 months. Urethral fistula and urethral stricture rates were 31.8 % (7/22 patients) and 4.5 % (1/22 patients), respectively. The occurrence of the urethral stricture was remarkably low compared with previous reports. Our histological results also showed a pronounced similarity between vaginal and buccal mucosa. Morphologically, they resembled urethral epithelium more closely than the forearm skin. Following the free transfer, the vaginal mucosal graft also showed a good revascularization and the inflammatory reaction and the extent of fibrosis of the mucosa decreased to the normal level after a 6-month prefabrication. CONCLUSION: With prefabrication of vaginal mucosal graft, we reconstruct a competent phallic neourethra in these FTM transsexuals. According to its histological similarities and source character, the vaginal mucosa is the excellent substitute material for promising urethral reconstruction in FTM transsexuals.


Assuntos
Órgãos Bioartificiais , Pênis , Cirurgia de Readequação Sexual , Transexualidade/cirurgia , Uretra/cirurgia , Vagina , Adulto , Feminino , Humanos , Masculino , Mucosa , Estudos Retrospectivos , Adulto Jovem
10.
Cancer Cell Int ; 14(1): 16, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24564864

RESUMO

Liver X receptors (LXRs) are nuclear receptors that function as ligand-activated transcription factors regulating lipid metabolism and inflammation. Recent discoveries found LXRs could regulate tumor growth in a variety of cancer cell lines. In this study, we investigated the effect of LXR activation on melanoma cell proliferation and apoptosis both in vitro and in vivo. Treatment of B16F10 and A-375 melanoma cells with synthetic LXR agonist T0901317 significantly inhibited the proliferation of melanoma cells in vitro. Meanwhile, T0901317 induced the apoptosis of B16F10 melanoma cells in a dose-dependent manner. Furthermore, western blot assay showed that the pro-apoptotic effect of T0901317 on B16F10 melanoma cells was mediated through caspase-3 pathway. Oral administration of T0901317 inhibited the growth of B16F10 melanoma in C56BL/6 mice. Altogether, this study demonstrates the critical role of LXRs in the regulation of melanoma growth and presents the LXR agonist T0901317 as a potential anti-melanoma agent.

11.
Adv Mater ; 36(27): e2401451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38630988

RESUMO

Graphene's emergence enables creating chiral metamaterials in helical shapes for terahertz (THz) applications, overcoming material limitations. However, practical implementation remains theoretical due to fabrication challenges. This paper introduces a dual-component self-assembly technique that enables creating vertically-aligned continuous monolayer graphene helices at microscale with great flexibility and high controllability. This assembly process not only facilitates the creation of 3D microstructures, but also positions the 3D structures from a horizontal to a vertical orientation, achieving an aspect ratio (height/width) of ≈2700. As a result, an array of vertically-aligned graphene helices is formed, reaching up to 4 mm in height, which is equivalent to 4 million times the height of monolayer graphene. The benefit of these 3D chiral structures made from graphene is their capability to infinitely extend in height, interacting with light in ways that are not possible with traditional 2D layering methods. Such an impressive height elevates a level of interaction with light that far surpasses what is achievable with traditional 2D layering methods, resulting in a notable enhancement of optical chirality properties. This approach is applicable to various 2D materials, promising advancements in innovative research and diverse applications across fields.

12.
Int J Biol Macromol ; : 136428, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389513

RESUMO

Rubber composites are indispensable in all areas of our daily lives. However, the formation of permanent crosslinked networks in rubber materials makes it difficult to recycle, resulting in a non-negligible waste of resources. In this paper, a vulcanization-free, fully bio-sourced rubber composite was prepared by using oxidized natural rubber (oNR) and oxidized cellulose nanofibers (TOCFs). TOCFs are selectively dispersed between the latex particles to form a segregated network. Meanwhile, the formation of hydrogen-bonding between oxygenated polar groups of oNR and abundant hydroxyl and carboxyl groups of TOCFs improves their interfacial interactions. This special structure promotes strain-induced crystallization (SIC) behavior of oNR matrix, giving its tensile strength up to 14.7 MPa. Furthermore, the oNR/TOCFs film shows excellent self-healing efficiency (96 %) at 40 °C for 5 h. The hygroscopicity of the TOCFs segregated network can turn the oNR/TOCFs film to be a conductive film by regulating the absorbed water content. The film has high conductivity (0.05 S/m) at a water content of 8.99 wt%, and the resistance change (RV/R0) can be varied between 1-5.9 × 10-6 at a water content range of 0-8.99 wt%, which makes it have potential for a wide range of humidity monitoring applications.

13.
ChemSusChem ; 17(14): e202400339, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38440923

RESUMO

The pursuit of efficient host materials to address the sluggish redox kinetics of sulfur species has been a longstanding challenge in advancing the practical application of lithium-sulfur batteries. In this study, amorphous carbon layer loaded with ultrafine CoP nanoparticles prepared by a one-step in situ carbonization/phosphating method to enhance the inhibition of 2D black phosphorus (BP) on LiPSs shuttle. The carbon coating layer facilitates accelerated electron/ion transport, enabling the active involvement of BP in the conversion of soluble lithium polysulfides (LiPSs). Concurrently, the ultra-fine CoP nanoparticles enhance the chemical anchoring ability and introduce additional catalytic sites. As a result, S@BP@C-CoP electrodes demonstrate exemplary cycling stability (with a minimal capacity decay of 0.054 % over 500 cycles at 1 C) and superior rate performance (607.1 mAh g-1 at 5 C). Moreover, at a sulfur loading of 5.5 mg cm-2, the electrode maintains an impressive reversible areal capacity of 5.45 mAh cm-2 after 50 cycles at 0.1 C. This research establishes a promising approach, leveraging black phosphorus-based materials, for developing high-efficiency Li-S batteries.

14.
J Alzheimers Dis ; 101(1): 159-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39177602

RESUMO

Background: Mild cognitive impairment (MCI) is a heterogeneous condition that can precede various forms of dementia, including Alzheimer's disease (AD). Identifying MCI subjects who are at high risk of progressing to AD is of major clinical relevance. Enlarged perivascular spaces (EPVS) on MRI are linked to cognitive decline, but their predictive value for MCI to AD progression is unclear. Objective: This study aims to assess the predictive value of EPVS for MCI to AD progression and develop a predictive model combining EPVS grading with clinical and laboratory data to estimate conversion risk. Methods: We analyzed 358 patients with MCI from the ADNI database, consisting of 177 MCI-AD converters and 181 non-converters. The data collected included demographic information, imaging data (including perivascular spaces grade), clinical assessments, and laboratory test results. Variable selection was conducted using the Least Absolute Shrinkage and Selection Operator (LASSO) method, followed by logistic regression to develop predictive model. Results: In the univariate logistic regression analysis, both moderate (OR = 5.54, 95% CI [3.04-10.18]) and severe (OR = 25.04, 95% CI [10.07-62.23]) enlargements of the centrum semiovale perivascular space (CSO-PVS) were found to be strong predictors of disease progression. LASSO analyses yielded 12 variables, refined to six in the final model: APOE4 genotype, ADAS11 score, CSO-PVS grade, and volumes of entorhinal, fusiform, and midtemporal regions, with an AUC of 0.956 in the training and 0.912 in the validation cohort. Conclusions: Our predictive model, emphasizing EPVS assessment, provides clinicians with a practical tool for early detection and management of AD risk in MCI patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Progressão da Doença , Sistema Glinfático , Imageamento por Ressonância Magnética , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Feminino , Masculino , Idoso , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Valor Preditivo dos Testes , Idoso de 80 Anos ou mais
15.
ACS Appl Eng Mater ; 2(8): 2016-2026, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39205812

RESUMO

The production of lunar regolith composites is a promising venture, especially when enabled by extrusion-based additive manufacturing techniques such as direct ink write. However, both three-dimensional (3D) printing production and usage of polymer composites containing regolish on the lunar surface are challenges due to harsh environmental conditions such as severe thermal cycling. While thermal degradation in polymer composites under thermal cycling has been studied, there is limited understanding of how polymer properties impact the mechanical performance of lunar regolith composites when both printing and usage are carried out under extreme thermal conditions. Here, we aim to bridge that gap through the creation of composites containing a lunar Highlands regolith simulant suspended in an ultraviolet (UV) curable binder, which were printed at -30 °C and thermally cycled between weekly lunar day (127 °C) and weekly night (-190 °C) temperatures. We validate that thermal stresses cause both physical and chemical degradation since the regolith simulant composites become stiffer, more porous, and show yellowing after exposure to thermal cycling. Moreover, we indicate that chemical degradation mechanisms seem to compete with residual polymerization in certain formulations. We attribute this phenomenon to partial crystallization of monomer species during printing at -30 °C, resulting in low vinyl bond conversion during initial curing. The results presented here shed light on the intricate interplay between thermal stresses, uncured polymer properties, and degradation mechanisms, which can help guide future use cases of regolith composites for lunar infrastructure needs.

16.
Fluids Barriers CNS ; 21(1): 60, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030617

RESUMO

BACKGROUND: Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY: Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS: BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.


Assuntos
Barreira Hematoencefálica , Doenças Neurodegenerativas , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Animais
17.
Cell Rep Med ; : 101731, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39303711

RESUMO

Current therapies against pancreatic ductal adenocarcinoma (PDAC) have limited clinical benefits owing to tumor heterogeneity and their unique immunosuppressive microenvironments. The eukaryotic initiation factor (eIF) 4F complex is involved in regulating translation and various downstream carcinogenic signaling pathways. We report that eIF4G1, one of the subunits of eIF4F, is overexpressed in cancer cells and cancer-associated fibroblasts, and this correlates with poor prognosis in patients with PDAC. In PDAC mice, eIF4G1 inhibition limits tumor progression and prolongs overall survival, especially when combined with PD1/PDL1 antagonists and gemcitabine. Mechanistically, eIF4G1 inhibition hinders the production of cytokines and chemokines that promote fibrosis and inhibit cytotoxic T cell chemotaxis. Moreover, eIF4G1 inhibition impairs integrinß1 protein translation and exerts tumor suppression effects through the FAK-ERK/AKT signaling pathway. These findings highlight the effects of eIF4G1 on tumor immune dependence and independence and identify eIF4G1 as a promising therapeutic target for PDAC.

18.
Metabolism ; 145: 155615, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286129

RESUMO

Cancer metabolic reprogramming is a promising target for cancer therapy. The progression of tumors, including their growth, development, metastasis, and spread, is a dynamic process that varies over time and location. This means that the metabolic state of tumors also fluctuates. A recent study found that energy production efficiency is lower in solid tumors but increases significantly in tumor metastasis. Despite its importance for targeted tumor metabolism therapy, few studies have described the dynamic metabolic changes of tumors. In this commentary, we discuss the limitations of past targeted tumor metabolism therapy and the key findings of this study. We also summarize its immediate clinical implications for dietary intervention and explore future research directions for understanding the dynamic changes in tumor metabolic reprogramming.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/patologia , Medicina de Precisão , Metabolismo Energético
19.
Neural Regen Res ; 18(2): 445-450, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900444

RESUMO

The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development. However, its function in retina regeneration remains elusive. Here we report that Sox11b, a zebrafish Sox11 homolog, regulates the migration and fate determination of Müller glia-derived progenitors (MGPCs) in an adult zebrafish model of mechanical retinal injury. Following a stab injury, the expression of Sox11b was induced in proliferating MGPCs in the retina. Sox11b knockdown did not affect MGPC formation at 4 days post-injury, although the nuclear morphology and subsequent radial migration of MGPCs were altered. At 7 days post-injury, Sox11b knockdown resulted in an increased proportion of MGPCs in the inner retina and a decreased proportion of MGPCs in the outer nuclear layer, compared with controls. Furthermore, Sox11b knockdown led to reduced photoreceptor regeneration, while it increased the numbers of newborn amacrines and retinal ganglion cells. Finally, quantitative polymerase chain reaction analysis revealed that Sox11b regulated the expression of Notch signaling components in the retina, and Notch inhibition partially recapitulated the Sox11b knockdown phenotype, indicating that Notch signaling functions downstream of Sox11b. Our findings imply that Sox11b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish, which may have critical implications for future explorations of retinal repair in mammals.

20.
J Agric Food Chem ; 71(1): 905-919, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548110

RESUMO

A novel photodynamic inactivation (PDI)-mediated antimicrobial film of polylactic acid/5-aminolevulinic acid (PLA/ALA) was successfully fabricated by a covalent grafting method using low-temperature plasma. The chemical structure, surface morphology, hydrophilic ability, and mechanical and barrier properties of the films were characterized, and their antibacterial, anti-biofilm potency and preservation effects on ready-to-eat salmon were investigated during storage. Results showed that the amino group of ALA was covalently grafted with the carboxyl group on the surface of PLA after the plasma treatment, with the highest grafting rate reaching ∼50%. The fabricated PLA/ALA films displayed an enhanced barrier ability against water vapor and oxygen. Under blue light-emitting diode illumination, the PLA/ALA films generated massive reactive oxygen species from the endogenous porphyrins in cells induced by ALA and then fatally destroyed the cell wall of planktonic cells and the architectural structures of sessile biofilms of the pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) and spoilage bacterium (Shewanella putrefaciens). More importantly, the PDI-mediated PLA/ALA films potently inhibited 99.9% native bacteria on ready-to-eat salmon and significantly suppressed the changes of its drip loss, pH, and lipid oxidation (MDA) during storage, and on this basis, the shelf life of salmon was extended by 4 days compared with that of the commercial polyethylene film. Therefore, the PDI-mediated PLA/ALA films are valid in inactivating harmful bacterial and preserving the quality of seafood.


Assuntos
Ácido Aminolevulínico , Salmão , Animais , Ácido Aminolevulínico/farmacologia , Poliésteres/química , Alimentos Marinhos/microbiologia , Bactérias , Embalagem de Alimentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA