Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 20(8): 1229-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26468126

RESUMO

Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone's precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/biossíntese , Ferro/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Larva , Mitocôndrias/química , Mitocôndrias/metabolismo , Mutação
2.
BMC Dev Biol ; 10: 68, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20565922

RESUMO

BACKGROUND: Mammals and Drosophila melanogaster share some striking similarities in spermatogenesis. Mitochondria in spermatids undergo dramatic morphological changes and syncytial spermatids are stripped from their cytoplasm and then individually wrapped by single membranes in an individualization process. In mammalian and fruit fly testis, components of the mitochondrial iron metabolism are expressed, but so far their function during spermatogenesis is unknown. Here we investigate the role of Drosophila mitoferrin (dmfrn), which is a mitochondrial carrier protein with an established role in the mitochondrial iron metabolism, during spermatogenesis. RESULTS: We found that P-element insertions into the 5'-untranslated region of the dmfrn gene cause recessive male sterility, which was rescued by a fluorescently tagged transgenic dmfrn genomic construct (dmfrnvenus). Testes of mutant homozygous dmfrnSH115 flies were either small with unorganized content or contained some partially elongated spermatids, or testes were of normal size but lacked mature sperm. Testis squashes indicated that spermatid elongation was defective and electron micrographs showed mitochondrial defects in elongated spermatids and indicated failed individualization. Using a LacZ reporter and the dmfrnvenus transgene, we found that dmfrn expression in testes was highest in spermatids, coinciding with the stages that showed defects in the mutants. Dmfrn-venus protein accumulated in mitochondrial derivatives of spermatids, where it remained until most of it was stripped off during individualization and disposed of in waste bags. Male sterility in flies with the hypomorph alleles dmfrnBG00456 and dmfrnEY01302 over the deletion Df(3R)ED6277 was increased by dietary iron chelation and suppressed by iron supplementation of the food, while male sterility of dmfrnSH115/Df(3R)ED6277 flies was not affected by food iron levels. CONCLUSIONS: In this work, we show that mutations in the Drosophila mitoferrin gene result in male sterility caused by developmental defects. From the sensitivity of the hypomorph mutants to low food iron levels we conclude that mitochondrial iron is essential for spermatogenesis. This is the first time that a link between the mitochondrial iron metabolism and spermatogenesis has been shown. Furthermore, due to the similar expression patterns of some mitochondrial iron metabolism genes in Drosophila and mammals, it is likely that our results are applicable for mammals as well.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Animais , Masculino , Espermatogênese
3.
Biochem Biophys Res Commun ; 400(3): 442-6, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20807501

RESUMO

Iron is essential for life and is needed for cell proliferation and cell cycle progression. Iron deprivation results first in cell cycle arrest and then in apoptosis. The Drosophila tumorous larval hemocyte cell line l(2) mbn was used to study the sensitivity and cellular response to iron deprivation through the chelator desferrioxamine (DFO). At a concentration of 10 µM DFO or more the proliferation was inhibited reversibly, while the amount of dead cells did not increase. FACS analysis showed that the cell cycle was arrested in G1/S-phase and the transcript level of cycE was decreased to less than 50% of control cells. These results show that iron chelation in this insect tumorous cell line causes a specific and coordinated cell cycle arrest.


Assuntos
Ciclo Celular , Proliferação de Células , Drosophila melanogaster/citologia , Ferro/fisiologia , Animais , Linhagem Celular Tumoral , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Ferro/farmacologia
4.
Biochem J ; 421(3): 463-71, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19453295

RESUMO

Mrs3p and Mrs4p (Mrs3/4p) are yeast mitochondrial iron carrier proteins that play important roles in ISC (iron-sulphur cluster) and haem biosynthesis. At low iron conditions, mitochondrial and cytoplasmic ISC protein maturation is correlated with MRS3/4 expression. Zebrafish mitoferrin1 (mfrn1), one of two MRS3/4 orthologues, is essential for erythropoiesis, but little is known about the ubiquitously expressed paralogue mfrn2. In the present study we identified a single mitoferrin gene (dmfrn) in the genome of Drosophila melanogaster, which is probably an orthologue of mfrn2. Overexpression of dmfrn in the Drosophila l(2)mbn cell line (mbn-dmfrn) resulted in decreased binding between IRP-1A (iron regulatory protein 1A) and stem-loop RNA structures referred to as IREs (iron responsive elements). mbn-dmfrn cell lines also had increased cytoplasmic aconitase activity and slightly decreased iron content. In contrast, iron loading results in decreased IRP-1A-IRE binding, but increased cellular iron content, in experimental mbn-dmfrn and control cell lines. Iron loading also increases cytoplasmic aconitase activity in all cell lines, but with slightly higher activity observed in mbn-dmfrn cells. From this we concluded that dmfrn overexpression stimulates cytoplasmic ISC protein maturation, as has been reported for MRS3/4 overexpression. Compared with control cell lines, mbn-dmfrn cells had higher Fer1HCH (ferritin 1 heavy chain homologue) transcript and protein levels. RNA interference of the putative Drosophila orthologue of human ABCB7, a mitochondrial transporter involved in cytoplasmic ISC protein maturation, restored Fer1HCH transcript levels of iron-treated mbn-dmfrn cells to those of control cells grown in normal medium. These results suggest that dmfrn overexpression in l(2)mbn cells causes an 'overestimation' of the cellular iron content, and that regulation of Fer1HCH transcript abundance probably depends on cytoplasmic ISC protein maturation.


Assuntos
Apoferritinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação para Cima , Sequência de Aminoácidos , Animais , Apoferritinas/química , Apoferritinas/metabolismo , Linhagem Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência
5.
Free Radic Biol Med ; 85: 71-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25841783

RESUMO

Friedreich's ataxia is the most important recessive ataxia in the Caucasian population. Loss of frataxin expression affects the production of iron-sulfur clusters and, therefore, mitochondrial energy production. One of the pathological consequences is an increase of iron transport into the mitochondrial compartment leading to a toxic accumulation of reactive iron. However, the mechanism underlying this inappropriate mitochondrial iron accumulation is still unknown. Control and frataxin-deficient flies were fed with an iron diet in order to mimic an iron overload and used to assess various cellular as well as mitochondrial functions. We showed that frataxin-deficient flies were hypersensitive toward dietary iron and developed an iron-dependent decay of mitochondrial functions. In the fly model exhibiting only partial frataxin loss, we demonstrated that the inability to activate ferritin translation and the enhancement of mitochondrial iron uptake via mitoferrin upregulation were likely the key molecular events behind the iron-induced phenotype. Both defects were observed during the normal process of aging, confirming their importance in the progression of the pathology. In an effort to further assess the importance of these mechanisms, we carried out genetic interaction studies. We showed that mitoferrin downregulation improved many of the frataxin-deficient conditions, including nervous system degeneration, whereas mitoferrin overexpression exacerbated most of them. Taken together, this study demonstrates the crucial role of mitoferrin dysfunction in the etiology of Friedreich's ataxia and provides evidence that impairment of mitochondrial iron transport could be an effective treatment of the disease.


Assuntos
Proteínas de Drosophila/fisiologia , Ataxia de Friedreich/fisiopatologia , Ferro/toxicidade , Animais , Modelos Animais de Doenças , Drosophila , Ataxia de Friedreich/genética , Expressão Gênica , Proteínas de Ligação ao Ferro/genética , Frataxina
6.
J Biol Chem ; 281(27): 18707-14, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16679315

RESUMO

In mammalian cells, iron homeostasis is largely regulated by post-transcriptional control of gene expression through the binding of iron-regulatory proteins (IRP1 and IRP2) to iron-responsive elements (IREs) contained in the untranslated regions of target mRNAs. IRP2 is the dominant iron sensor in mammalian cells under normoxia, but IRP1 is the more ancient protein in evolutionary terms and has an additional function as a cytosolic aconitase. The Caenorhabditis elegans genome does not contain an IRP2 homolog or identifiable IREs; its IRP1 homolog has aconitase activity but does not bind to mammalian IREs. The Drosophila genome offers an evolutionary intermediate containing two IRP1-like proteins (IRP-1A and IRP-1B) and target genes with IREs. Here, we used purified recombinant IRP-1A and IRP-1B from Drosophila melanogaster and showed that only IRP-1A can bind to IREs, although both proteins possess aconitase activity. These results were also corroborated in whole-fly homogenates from transgenic flies that overexpress IRP-1A and IRP-1B in their fat bodies. Ubiquitous and muscle-specific overexpression of IRP-1A, but not of IRP-1B, resulted in pre-adult lethality, underscoring the importance of the biochemical difference between the two proteins. Domain-swap experiments showed that multiple amino acid substitutions scattered throughout the IRP1 domains are synergistically required for conferring IRE binding activity. Our data suggest that as a first step during the evolution of the IRP/IRE system, the ancient cytosolic aconitase was duplicated in insects with one variant acquiring IRE-specific binding.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Animais , Caenorhabditis elegans/genética , Citosol/metabolismo , Proteínas de Drosophila/genética , Genoma , Humanos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA