RESUMO
In this retrospective study, whole-genome sequencing (WGS) data generated on an Ion Torrent platform was used to predict phenotypic drug resistance profiles for first- and second-line drugs among Swedish clinical Mycobacterium tuberculosis isolates from 2016 to 2018. The accuracy was â¼99% for all first-line drugs and 100% for four second-line drugs. Our analysis supports the introduction of WGS into routine diagnostics, which might, at least in Sweden, replace phenotypic drug susceptibility testing in the future.
Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Sequenciamento Completo do Genoma , Humanos , Suécia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
Four molluscum contagiosum virus (MOCV) genotypes (MOCV1-4) and four subtype variants (MOCV1p, MOCV1va, MOCV1vb, and MOCV1vc) were partially characterized using restriction enzyme profiling in the early 1980s/1990s. However, complete genome sequences of only MOCV1 and MOCV2 are available. The evolutionary pathways of MOCV genotypes and subtype variants with unavailable sequences remain unclear, and also whether all MOCV genotypes/subtype variants can be reliably detected and appropriately categorized using available PCR-based protocols. We de novo fully characterized and functionally annotated 47 complete MOCV genomes, including two putative non-MOCV1/2 isolates, expanding the number of fully characterized MOCV genomes to 66. To ascertain the placement of any putative novel MOCV sequence into the restriction profiling typing scheme, we developed an original framework for extracting complete MOCV genome sequence-based restriction profiles and matching them with reference restriction profiles. We confirmed that two putative non-MOCV1/2 isolates represent the first complete genomes of MOCV3. Comprehensive phylogenomic, recombination, and restriction enzyme recognition site analysis of all 66 currently available MOCV genomes showed that they can be agglomerated into six phylogenetic subgroups (PG1-6), corresponding to the subtype variants from the pioneering studies. PG5 was a novel subtype variant of MOCV2, but no PGs corresponded to the subtype variants MOCV1vb or MOCV4. We showed that the phylogenetic subgroups may have diverged from the prototype MOCV genotype lineages following large-scale recombination events and hinted at partial sequence content of MOCV4 and direction of recombinant transfer in the events that spawned PG5 and the yet undetected subtype variant MOCV1vb.IMPORTANCEFour molluscum contagiosum virus (MOCV) genotypes (MOCV1-4) and four subtype variants were partially characterized using restriction enzyme profiling in the 1980s/1990s, but complete genome sequences of only MOCV1 and MOCV2 are available. The evolutionary pathways whereby genotypes/subtype variants with unavailable sequences emerged and whether all MOCVs can be detected using current diagnostic approaches remain unclear. We fully characterized 47 novel complete MOCV genomes, including the first complete MOCV3 genome, expanding the number of fully characterized genomes to 66. For reliably classifying the novel non-MOCV1/2 genomes, we developed and validated a framework for matching sequence-derived restriction maps with those defining MOCV subtypes in pioneering studies. Six phylogenetic subgroups (PG1-6) were identified, PG5 representing a novel MOCV2 subtype. The phylogenetic subgroups diverged from the prototype lineages following large-scale recombination events and hinted at partial sequence content of MOCV4 and direction of recombinant transfer in the events spawning PG5 and yet undetected MOCV1vb variant.
RESUMO
Infection in the central nervous system is a severe condition associated with high morbidity and mortality. Despite ample testing, the majority of encephalitis and meningitis cases remain undiagnosed. Metagenomic sequencing of cerebrospinal fluid has emerged as an unbiased approach to identify rare microbes and novel pathogens. However, several major hurdles remain, including establishment of individual limits of detection, removal of false positives and implementation of universal controls. Twenty-one cerebrospinal fluid samples, in which a known pathogen had been positively identified by available clinical techniques, were subjected to metagenomic DNA sequencing. Fourteen samples contained minute levels of Epstein-Barr virus. The detection threshold for each sample was calculated by using the total leukocyte content in the sample and environmental contaminants found in the bioinformatic classifiers. Virus sequences were detected in all ten samples, in which more than one read was expected according to the calculations. Conversely, no viral reads were detected in seven out of eight samples, in which less than one read was expected according to the calculations. False positive pathogens of computational or environmental origin were readily identified, by using a commonly available cell control. For bacteria, additional filters including a comparison between classifiers removed the remaining false positives and alleviated pathogen identification. Here we show a generalizable method for identification of pathogen species using DNA metagenomic sequencing. The choice of bioinformatic method mainly affected the efficiency of pathogen identification, but not the sensitivity of detection. Identification of pathogens requires multiple filtering steps including read distribution, sequence diversity and complementary verification of pathogen reads.
Assuntos
Infecções por Vírus Epstein-Barr , Líquido Cefalorraquidiano/microbiologia , DNA , Herpesvirus Humano 4/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Análise de Sequência de DNARESUMO
BACKGROUND: The kinetoplastid protozoan Leishmania tropica mainly causes cutaneous leishmaniasis in humans in the Middle East, and relapse or treatment failure after treatment are common in this area. L. tropica's digenic life cycle includes distinct stages in the vector sandfly and the mammalian host. Sexual reproduction and genetic exchange appear to occur more frequently than in other Leishmania species. Understanding these processes is complicated by chromosome instability during cell division that yields aneuploidy, recombination and heterozygosity. This combination of rare recombination and aneuploid permits may reveal signs of hypothetical parasexual mating, where diploid cells fuse to form a transient tetraploid that undergoes chromosomal recombination and gradual chromosomal loss. METHODOLOGY/PRINCIPAL FINDINGS: The genome-wide SNP diversity from 22 L. tropica isolates showed chromosome-specific runs of patchy heterozygosity and extensive chromosome copy number variation. All these isolates were collected during 2007-2017 in Sweden from patients infected in the Middle East and included isolates from a patient possessing two genetically distinct leishmaniasis infections three years apart with no evidence of re-infection. We found differing ancestries on the same chromosome (chr36) across multiple samples: matching the reference genome with few derived alleles, followed by blocks of heterozygous SNPs, and then by clusters of homozygous SNPs with specific recombination breakpoints at an inferred origin of replication. Other chromosomes had similar marked changes in heterozygosity at strand-switch regions separating polycistronic transcriptional units. CONCLUSION/SIGNIFICANCE: These large-scale intra- and inter-chromosomal changes in diversity driven by recombination and aneuploidy suggest multiple mechanisms of cell reproduction and diversification in L. tropica, including mitotic, meiotic and parasexual processes. It underpins the need for more genomic surveillance of Leishmania, to detect emerging hybrids that could spread more widely and to better understand the association between genetic variation and treatment outcome. Furthering our understanding of Leishmania genome evolution and ancestry will aid better diagnostics and treatment for cutaneous leishmaniasis caused by L.tropica in the Middle East.
Assuntos
Genoma de Protozoário , Leishmania tropica/genética , Leishmaniose Cutânea/parasitologia , Afeganistão , Cromossomos/genética , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Variação Genética , Humanos , Irã (Geográfico) , Leishmania tropica/classificação , Leishmania tropica/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética , SíriaRESUMO
During an outbreak of acute gastroenteritis in Sweden when laboratory routine diagnostics failed to detect a causative agent, Sapporo virus was detected in stool specimens using electron microscopy (M.-P. Hergens, J. Nederby Öhd, E. Alm, H. Hervius Askling, S. Helgesson, M. Insulander, N. Lagerkvist, B. Svennungsson, M. Tihane, T. Tolfvenstam, P. Follin, unpublished data). Whole-genome sequencing revealed a Sapporo virus variant clustering with genogroup V.