Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 87(3): 1756-1766, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-34610236

RESUMO

This article discloses the direct α-amination of α-branched aldehydes applying nitrogen-based nucleophiles. Under organocatalyzed, oxidative conditions α-branched aldehydes are umpoled to their electrophilic synthons and, subsequently, displaced by a variety of nucleophilic amines to form tetrasubstituted tertiary centers. A similar strategy has been previously employed to form congested C-C, C-O, and C-S bonds; however, unsatisfactory results were received when extending the methodology to include C-N bonds. Initially, intramolecular α-amination reactions were undertaken to foster dihydroquinoxaline-type products. A solvent exchange to the polar, aprotic solvent, MeNO2, proved critical to facilitate intermolecular α-C-N bond formation with a wide range of amine coupling partners (N-heterocycles, N,N-diaryl amines, and anilines). Application of the solvent exchange to the enantioselective SN2-DKR manifold provided distinct regimes leading to refinement in yield and enantioselectivity.

2.
J Am Chem Soc ; 143(19): 7509-7520, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33944572

RESUMO

The SN2 reaction exhibits the classic Walden inversion, indicative of the stereospecific backside attack of the nucleophile on the stereogenic center. Observation of the inversion of the stereocenter provides evidence for an SN2-type displacement. However, this maxim is contingent on substitution proceeding on a discrete stereocenter. Here we report an SN2 reaction that leads to enantioenrichment of product despite starting from a racemic mixture of starting material. The enantioconvergent reaction proceeds through a dynamic Walden cycle, involving an equilibrating mixture of enantiomers, initiated by a chiral aminocatalyst and terminated by a stereoselective SN2 reaction at a tertiary carbon to provide a quaternary carbon stereocenter. A combination of computational, kinetic, and empirical studies elucidates the multifaceted role of the chiral organocatalyst to provide a model example of the Curtin-Hammett principle. These examples challenge the notion of enantioenriched products exclusively arising from predefined stereocenters when operating through an SN2 mechanism. Based on these principles, examples are included to highlight the generality of the mechanism. We anticipate the asymmetric SN2 dynamic kinetic resolution to be used for a variety of future reactions.

3.
Chem Sci ; 14(13): 3676-3681, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37006689

RESUMO

Compounds featuring atropisomerism are ubiquitous in natural products, therapeutics, advanced materials, and asymmetric synthesis. However, stereoselective preparation of these compounds presents many synthetic challenges. This article introduces streamlined access to a versatile chiral biaryl template through C-H halogenation reactions employing high-valent Pd catalysis in combination with chiral transient directing groups. This methodology is highly scalable, insensitive to moisture and air, and proceeds, in select cases, with Pd-loadings as low as 1 mol%. Chiral mono-brominated, dibrominated, and bromochloro biaryls are prepared in high yield and excellent stereoselectivity. These serve as remarkable building blocks bearing orthogonal synthetic handles for a gamut of reactions. Empirical studies elucidated regioselective C-H activation to be predicated on the oxidation state of Pd and diverging site-halogenation to result from cooperative effects of Pd and oxidant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA