Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(11): 6144-6164, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096593

RESUMO

Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.


Assuntos
Reprogramação Celular/genética , Células da Granulosa/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Cromatina/metabolismo , DNA/metabolismo , Feminino , Masculino , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transcriptoma
2.
Dev Biol ; 424(2): 208-220, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274610

RESUMO

Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function.


Assuntos
Ovário/embriologia , Ovário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Família Aldeído Desidrogenase 1 , Animais , Linhagem da Célula/efeitos dos fármacos , Feminino , Feto/embriologia , Feto/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Inativação de Genes , Genes Dominantes , Isoenzimas/metabolismo , Masculino , Mamíferos , Meiose/efeitos dos fármacos , Mesonefro/efeitos dos fármacos , Mesonefro/embriologia , Mesonefro/metabolismo , Camundongos , Ovário/efeitos dos fármacos , Receptores do Ácido Retinoico/metabolismo , Retinal Desidrogenase/metabolismo , Retinoides/farmacologia , Processos de Determinação Sexual/efeitos dos fármacos , Técnicas de Cultura de Tecidos
3.
Dev Dyn ; 242(1): 44-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23074011

RESUMO

In animals, females deposit gene products into developing oocytes, which drive early cellular events in embryos immediately after fertilization. As maternal gene products are present before fertilization, the functional manipulation of maternal genes is often challenging to implement, requiring gene expression or targeting during oogenesis. Maternal expression can be achieved through transgenesis, but transgenic approaches are time consuming and subject to undesired epigenetic effects. Here, we have implemented in vitro culturing of experimentally manipulated immature oocytes to study maternal gene contribution to early embryonic development in the zebrafish. We demonstrate phenotypic rescue of a maternal-effect mutation by expressing wild-type product in cultured oocytes. We also generate loss-of-function phenotypes in embryos through either the expression of a dominant-negative transcript or injection of translation-blocking morpholino oligonucleotides. Finally, we demonstrate subcellular localization during the early cell divisions immediately after fertilization of an exogenously provided maternal product fused to a fluorescent protein. These manipulations extend the potential to carry out genetic and imaging studies of zebrafish maternal genes during the egg-to-embryo transition.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Transferência de Genes , Oócitos/metabolismo , RNA Mensageiro Estocado/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Primers do DNA/genética , Feminino , Fertilização in vitro , Microinjeções , Microscopia Confocal , Morfolinos/administração & dosagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mol Reprod Dev ; 77(4): 299-313, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19908256

RESUMO

In the earliest stages of animal development prior to the commencement of zygotic transcription, all critical cellular processes are carried out by maternally-provided molecular products accumulated in the egg during oogenesis. Disruption of these maternal products can lead to defective embryogenesis. In this review, we focus on maternal genes with roles in the fundamental processes of fertilization, cell division, centrosome regulation, and germ cell development with emphasis on findings from the zebrafish, as this is a unique and valuable model system for vertebrate reproduction.


Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário/fisiologia , Fertilização/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Ciclo Celular/fisiologia , Centrossomo/metabolismo , Segregação de Cromossomos , Citoesqueleto/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Células Germinativas/citologia , Células Germinativas/fisiologia , Humanos , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Appl Environ Microbiol ; 74(4): 1273-5, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083886

RESUMO

A mutant derived from Acinetobacter baylyi ADP1 was isolated from a screen for genes involved in the response to DNA damage. This derivative has an insertion in the mpl gene which encodes a peptidoglycan-recycling protein. We demonstrate that the insertion renders cells sensitive to mitomycin C and to UV.


Assuntos
Acinetobacter/genética , Dano ao DNA , Metaloendopeptidases/genética , Mutação/genética , Acinetobacter/efeitos dos fármacos , Acinetobacter/efeitos da radiação , Mitomicina/toxicidade , Raios Ultravioleta
6.
J Vis Exp ; (122)2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28518112

RESUMO

Cellular events that take place during the earliest stages of animal embryonic development are driven by maternally derived gene products deposited into the developing oocyte. Because these events rely on maternal products which typically act very soon after fertilization-that preexist inside the egg, standard approaches for expression and functional reduction involving the injection of reagents into the fertilized egg are typically ineffective. Instead, such manipulations must be performed during oogenesis, prior to or during the accumulation of maternal products. This article describes in detail a protocol for the in vitro maturation of immature zebrafish oocytes and their subsequent in vitro fertilization, yielding viable embryos that survive to adulthood. This method allows the functional manipulation of maternal products during oogenesis, such as the expression of products for phenotypic rescue and tagged construct visualization, as well as the reduction of gene function through reverse-genetics agents.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Animais , Feminino , Fertilização in vitro , Oócitos/crescimento & desenvolvimento , Oogênese , Peixe-Zebra/embriologia
7.
Curr Biol ; 25(6): 764-771, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25683803

RESUMO

Transcription factors related to the insect sex-determination gene doublesex (DMRT proteins) control sex determination and/or sexual differentiation in diverse metazoans and are implicated in transitions between sex-determining mechanisms during vertebrate evolution [1]. In mice, Dmrt1 is required for male gonadal differentiation in somatic cells and germ cells [2-4]. DMRT1 also maintains male gonadal sex: its loss, even in adults, can trigger sexual cell-fate reprogramming in which male Sertoli cells transdifferentiate into their female equivalents-granulosa cells-and testicular tissue reorganizes to a more ovarian morphology [5]. Here we use a conditional Dmrt1 transgene to show that Dmrt1 is not only necessary but also sufficient to specify male cell identity in the mouse gonad. DMRT1 expression in the ovary silenced the female sex-maintenance gene Foxl2 and reprogrammed juvenile and adult granulosa cells into Sertoli-like cells, triggering formation of structures resembling male seminiferous tubules. DMRT1 can silence Foxl2 even in the absence of the testis-determining genes Sox8 and Sox9. mRNA profiling found that DMRT1 activates many testicular genes and downregulates ovarian genes and single-cell RNA sequencing in transdifferentiating cells identified dynamically expressed candidate mediators of this process. Strongly upregulated genes were highly enriched on chromosome X, consistent with sexually antagonistic functions. This study provides an in vivo example of single-gene reprogramming of cell sexual identity. Our findings suggest a reconsideration of mechanisms involved in human disorders of sex development (DSDs) and empirically support evolutionary models in which loss or gain of Dmrt1 function promotes establishment of new vertebrate sex-determination systems.


Assuntos
Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Ovário/citologia , Ovário/metabolismo , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Transdiferenciação Celular , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Ovário/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Diferenciação Sexual , Análise de Célula Única , Cromossomo X/genética
8.
Dev Cell ; 29(5): 511-520, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856513

RESUMO

Mammalian sex determination initiates in the fetal gonad with specification of bipotential precursor cells into male Sertoli cells or female granulosa cells. This choice was long presumed to be irreversible, but genetic analysis in the mouse recently revealed that sexual fates must be maintained throughout life. Somatic cells in the testis or ovary, even in adults, can be induced to transdifferentiate to their opposite-sex equivalents by loss of a single transcription factor, DMRT1 in the testis or FOXL2 in the ovary. Here, we investigate what mechanism DMRT1 prevents from triggering transdifferentiation. We find that DMRT1 blocks testicular retinoic acid (RA) signaling from activating genes normally involved in female sex determination and ovarian development and show that inappropriate activation of these genes can drive sexual transdifferentiation. By preventing activation of potential feminizing genes, DMRT1 allows Sertoli cells to participate in RA signaling, which is essential for reproduction, without being sexually reprogrammed.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Ovário/citologia , Retinoides/farmacologia , Células de Sertoli/citologia , Testículo/citologia , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Feminino , Imunofluorescência , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovário/efeitos dos fármacos , Ovário/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ácido Retinoico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Processos de Determinação Sexual/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
9.
Curr Biol ; 22(10): 843-51, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22542100

RESUMO

BACKGROUND: The centrosome has a well-established role as a microtubule organizer during mitosis and cytokinesis. In addition, it facilitates the union of parental haploid genomes following fertilization by nucleating a microtubule aster along which the female pronucleus migrates toward the male pronucleus. Stable associations between the sperm aster and the pronuclei are essential during this directed movement. RESULTS: Our studies reveal that the zebrafish gene futile cycle (fue) is required in the zygote for male pronucleus-centrosome attachment and female pronuclear migration. We show that fue encodes a novel, maternally-provided long form of lymphoid-restricted membrane protein (lrmp), a vertebrate-specific gene of unknown function. Both maternal lrmp messenger RNA (mRNA) and protein are highly localized in the zygote, in a largely overlapping pattern at nuclear membranes, centrosomes, and spindles. Truncated Lrmp-EGFP fusion proteins identified subcellular targeting signals in the C terminus of Lrmp; however, endogenous mRNA localization is likely important to ensure strict spatial expression of the protein. Localization of both Lrmp protein and lrmp RNA is defective in fue mutant embryos, indicating that correct targeting of lrmp gene products is dependent on Lrmp function. CONCLUSIONS: Lrmp is a conserved vertebrate gene whose maternally inherited products are essential for nucleus-centrosome attachment and pronuclear congression during fertilization. Precise subcellular localization of lrmp products also suggests a requirement for strict spatiotemporal regulation of their function in the early embryo.


Assuntos
Núcleo Celular/fisiologia , Centrossomo/fisiologia , Proteínas de Membrana/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Zigoto/fisiologia , Animais , Sequência de Bases , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilização/fisiologia , Imunofluorescência , Hibridização in Situ Fluorescente , Masculino , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo
10.
Antimicrob Agents Chemother ; 50(8): 2658-65, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16870755

RESUMO

Bacillus anthracis lethal toxin (LT) produces symptoms of anthrax in mice and induces rapid lysis of macrophages derived from certain inbred strains. LT is comprised of a receptor binding component, protective antigen (PA), which delivers the enzymatic component, lethal factor (LF), into cells. We found that mouse macrophages were protected from toxin by the antitumor drug cis-diammineplatinum (II) dichloride (cisplatin). Cisplatin was shown to inhibit LT-mediated cleavage of cellular mitogen-activated protein kinases (MEKs) without inhibiting LF's in vitro proteolytic activity. Cisplatin-treated PA lost 100% of its ability to function in toxicity assays when paired with untreated LF, despite maintaining the ability to bind to cells. Cisplatin-treated PA was unable to form heptameric oligomers required for LF binding and translocation. The drug was shown to modify PA in a reversible noncovalent manner. Not surprisingly, cisplatin also blocked the actions of anthrax edema toxin and of LF-Pseudomonas aeruginosa exotoxin A fusion peptide (FP59), both of which require PA for translocation. Treatment of BALB/cJ mice or Fischer F344 rats with cisplatin at biologically relevant concentrations completely protected the animals from a coadministered lethal dose of LT. However, treatment with cisplatin 2 hours before or after animals received a lethal bolus of toxin did not protect them.


Assuntos
Antígenos de Bactérias/toxicidade , Antineoplásicos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/toxicidade , Cisplatino/farmacologia , Exotoxinas/antagonistas & inibidores , Exotoxinas/toxicidade , Animais , Antraz/tratamento farmacológico , Antineoplásicos/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Injeções Intravenosas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA