Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39191257

RESUMO

Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1+ neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.

2.
Cell ; 186(1): 178-193.e15, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608653

RESUMO

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.


Assuntos
Comportamento Sexual Animal , Núcleo Hipotalâmico Ventromedial , Animais , Comportamento Sexual Animal/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Hipotálamo/fisiologia , Agressão/fisiologia , Comportamento Social
3.
Cell ; 174(1): 44-58.e17, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29779950

RESUMO

Many naturalistic behaviors are built from modular components that are expressed sequentially. Although striatal circuits have been implicated in action selection and implementation, the neural mechanisms that compose behavior in unrestrained animals are not well understood. Here, we record bulk and cellular neural activity in the direct and indirect pathways of dorsolateral striatum (DLS) as mice spontaneously express action sequences. These experiments reveal that DLS neurons systematically encode information about the identity and ordering of sub-second 3D behavioral motifs; this encoding is facilitated by fast-timescale decorrelations between the direct and indirect pathways. Furthermore, lesioning the DLS prevents appropriate sequence assembly during exploratory or odor-evoked behaviors. By characterizing naturalistic behavior at neural timescales, these experiments identify a code for elemental 3D pose dynamics built from complementary pathway dynamics, support a role for DLS in constructing meaningful behavioral sequences, and suggest models for how actions are sculpted over time.


Assuntos
Comportamento Animal , Corpo Estriado/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Corpo Estriado/efeitos dos fármacos , Eletrodos Implantados , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fotometria , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D1/genética
4.
Nature ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142337

RESUMO

Continuous attractors are an emergent property of neural population dynamics that have been hypothesized to encode continuous variables such as head direction and eye position1-4. In mammals, direct evidence of neural implementation of a continuous attractor has been hindered by the challenge of targeting perturbations to specific neurons within contributing ensembles2,3. Dynamical systems modelling has revealed that neurons in the hypothalamus exhibit approximate line-attractor dynamics in male mice during aggressive encounters5. We have previously hypothesized that these dynamics may encode the variable intensity and persistence of an aggressive internal state. Here we report that these neurons also showed line-attractor dynamics in head-fixed mice observing aggression6. This allowed us to identify and manipulate line-attractor-contributing neurons using two-photon calcium imaging and holographic optogenetic perturbations. On-manifold perturbations yielded integration of optogenetic stimulation pulses and persistent activity that drove the system along the line attractor, while transient off-manifold perturbations were followed by rapid relaxation back into the attractor. Furthermore, single-cell stimulation and imaging revealed selective functional connectivity among attractor-contributing neurons. Notably, individual differences among mice in line-attractor stability were correlated with the degree of functional connectivity among attractor-contributing neurons. Mechanistic recurrent neural network modelling indicated that dense subnetwork connectivity and slow neurotransmission7 best recapitulate our empirical findings. Our work bridges circuit and manifold levels3, providing causal evidence of continuous attractor dynamics encoding an affective internal state in the mammalian hypothalamus.

5.
Nature ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142338

RESUMO

Females exhibit complex, dynamic behaviours during mating with variable sexual receptivity depending on hormonal status1-4. However, how their brains encode the dynamics of mating and receptivity remains largely unknown. The ventromedial hypothalamus, ventrolateral subdivision contains oestrogen receptor type 1-positive neurons that control mating receptivity in female mice5,6. Here, unsupervised dynamical system analysis of calcium imaging data from these neurons during mating uncovered a dimension with slow ramping activity, generating a line attractor in neural state space. Neural perturbations in behaving females demonstrated relaxation of population activity back into the attractor. During mating, population activity integrated male cues to ramp up along this attractor, peaking just before ejaculation. Activity in the attractor dimension was positively correlated with the degree of receptivity. Longitudinal imaging revealed that attractor dynamics appear and disappear across the oestrus cycle and are hormone dependent. These observations suggest that a hypothalamic line attractor encodes a persistent, escalating state of female sexual arousal or drive during mating. They also demonstrate that attractors can be reversibly modulated by hormonal status, on a timescale of days.

6.
Nature ; 614(7946): 108-117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653449

RESUMO

Spontaneous animal behaviour is built from action modules that are concatenated by the brain into sequences1,2. However, the neural mechanisms that guide the composition of naturalistic, self-motivated behaviour remain unknown. Here we show that dopamine systematically fluctuates in the dorsolateral striatum (DLS) as mice spontaneously express sub-second behavioural modules, despite the absence of task structure, sensory cues or exogenous reward. Photometric recordings and calibrated closed-loop optogenetic manipulations during open field behaviour demonstrate that DLS dopamine fluctuations increase sequence variation over seconds, reinforce the use of associated behavioural modules over minutes, and modulate the vigour with which modules are expressed, without directly influencing movement initiation or moment-to-moment kinematics. Although the reinforcing effects of optogenetic DLS dopamine manipulations vary across behavioural modules and individual mice, these differences are well predicted by observed variation in the relationships between endogenous dopamine and module use. Consistent with the possibility that DLS dopamine fluctuations act as a teaching signal, mice build sequences during exploration as if to maximize dopamine. Together, these findings suggest a model in which the same circuits and computations that govern action choices in structured tasks have a key role in sculpting the content of unconstrained, high-dimensional, spontaneous behaviour.


Assuntos
Comportamento Animal , Reforço Psicológico , Recompensa , Animais , Camundongos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Sinais (Psicologia) , Optogenética , Fotometria
7.
Nat Methods ; 21(7): 1329-1339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997595

RESUMO

Keypoint tracking algorithms can flexibly quantify animal movement from videos obtained in a wide variety of settings. However, it remains unclear how to parse continuous keypoint data into discrete actions. This challenge is particularly acute because keypoint data are susceptible to high-frequency jitter that clustering algorithms can mistake for transitions between actions. Here we present keypoint-MoSeq, a machine learning-based platform for identifying behavioral modules ('syllables') from keypoint data without human supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise from behavior, enabling it to identify syllables whose boundaries correspond to natural sub-second discontinuities in pose dynamics. Keypoint-MoSeq outperforms commonly used alternative clustering methods at identifying these transitions, at capturing correlations between neural activity and behavior and at classifying either solitary or social behaviors in accordance with human annotations. Keypoint-MoSeq also works in multiple species and generalizes beyond the syllable timescale, identifying fast sniff-aligned movements in mice and a spectrum of oscillatory behaviors in fruit flies. Keypoint-MoSeq, therefore, renders accessible the modular structure of behavior through standard video recordings.


Assuntos
Algoritmos , Comportamento Animal , Aprendizado de Máquina , Gravação em Vídeo , Animais , Camundongos , Comportamento Animal/fisiologia , Gravação em Vídeo/métodos , Movimento/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Masculino
8.
Proc Natl Acad Sci U S A ; 119(15): e2113961119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385355

RESUMO

In probabilistic and nonstationary environments, individuals must use internal and external cues to flexibly make decisions that lead to desirable outcomes. To gain insight into the process by which animals choose between actions, we trained mice in a task with time-varying reward probabilities. In our implementation of such a two-armed bandit task, thirsty mice use information about recent action and action­outcome histories to choose between two ports that deliver water probabilistically. Here we comprehensively modeled choice behavior in this task, including the trial-to-trial changes in port selection, i.e., action switching behavior. We find that mouse behavior is, at times, deterministic and, at others, apparently stochastic. The behavior deviates from that of a theoretically optimal agent performing Bayesian inference in a hidden Markov model (HMM). We formulate a set of models based on logistic regression, reinforcement learning, and sticky Bayesian inference that we demonstrate are mathematically equivalent and that accurately describe mouse behavior. The switching behavior of mice in the task is captured in each model by a stochastic action policy, a history-dependent representation of action value, and a tendency to repeat actions despite incoming evidence. The models parsimoniously capture behavior across different environmental conditionals by varying the stickiness parameter, and like the mice, they achieve nearly maximal reward rates. These results indicate that mouse behavior reaches near-maximal performance with reduced action switching and can be described by a set of equivalent models with a small number of relatively fixed parameters.


Assuntos
Comportamento de Escolha , Tomada de Decisões , Camundongos , Animais , Camundongos/psicologia , Recompensa , Incerteza
9.
PLoS Comput Biol ; 19(9): e1011067, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695776

RESUMO

To behave adaptively, animals must learn to predict future reward, or value. To do this, animals are thought to learn reward predictions using reinforcement learning. However, in contrast to classical models, animals must learn to estimate value using only incomplete state information. Previous work suggests that animals estimate value in partially observable tasks by first forming "beliefs"-optimal Bayesian estimates of the hidden states in the task. Although this is one way to solve the problem of partial observability, it is not the only way, nor is it the most computationally scalable solution in complex, real-world environments. Here we show that a recurrent neural network (RNN) can learn to estimate value directly from observations, generating reward prediction errors that resemble those observed experimentally, without any explicit objective of estimating beliefs. We integrate statistical, functional, and dynamical systems perspectives on beliefs to show that the RNN's learned representation encodes belief information, but only when the RNN's capacity is sufficiently large. These results illustrate how animals can estimate value in tasks without explicitly estimating beliefs, yielding a representation useful for systems with limited capacity.


Assuntos
Aprendizagem , Reforço Psicológico , Animais , Teorema de Bayes , Recompensa , Redes Neurais de Computação
10.
Biostatistics ; 23(2): 643-665, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33417699

RESUMO

Personalized cancer treatments based on the molecular profile of a patient's tumor are an emerging and exciting class of treatments in oncology. As genomic tumor profiling is becoming more common, targeted treatments for specific molecular alterations are gaining traction. To discover new potential therapeutics that may apply to broad classes of tumors matching some molecular pattern, experimentalists and pharmacologists rely on high-throughput, in vitro screens of many compounds against many different cell lines. We propose a hierarchical Bayesian model of how cancer cell lines respond to drugs in these experiments and develop a method for fitting the model to real-world high-throughput screening data. Through a case study, the model is shown to capture nontrivial associations between molecular features and drug response, such as requiring both wild type TP53 and overexpression of MDM2 to be sensitive to Nutlin-3(a). In quantitative benchmarks, the model outperforms a standard approach in biology, with $\approx20\%$ lower predictive error on held out data. When combined with a conditional randomization testing procedure, the model discovers markers of therapeutic response that recapitulate known biology and suggest new avenues for investigation. All code for the article is publicly available at https://github.com/tansey/deep-dose-response.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Teorema de Bayes , Avaliação Pré-Clínica de Medicamentos/métodos , Detecção Precoce de Câncer , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
11.
J Am Stat Assoc ; 119(547): 2382-2395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308788

RESUMO

Neyman-Scott processes (NSPs) are point process models that generate clusters of points in time or space. They are natural models for a wide range of phenomena, ranging from neural spike trains to document streams. The clustering property is achieved via a doubly stochastic formulation: first, a set of latent events is drawn from a Poisson process; then, each latent event generates a set of observed data points according to another Poisson process. This construction is similar to Bayesian nonparametric mixture models like the Dirichlet process mixture model (DPMM) in that the number of latent events (i.e. clusters) is a random variable, but the point process formulation makes the NSP especially well suited to modeling spatiotemporal data. While many specialized algorithms have been developed for DPMMs, comparatively fewer works have focused on inference in NSPs. Here, we present novel connections between NSPs and DPMMs, with the key link being a third class of Bayesian mixture models called mixture of finite mixture models (MFMMs). Leveraging this connection, we adapt the standard collapsed Gibbs sampling algorithm for DPMMs to enable scalable Bayesian inference on NSP models. We demonstrate the potential of Neyman-Scott processes on a variety of applications including sequence detection in neural spike trains and event detection in document streams.

12.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826298

RESUMO

Line attractors are emergent population dynamics hypothesized to encode continuous variables such as head direction and internal states. In mammals, direct evidence of neural implementation of a line attractor has been hindered by the challenge of targeting perturbations to specific neurons within contributing ensembles. Estrogen receptor type 1 (Esr1)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) show line attractor dynamics in male mice during fighting. We hypothesized that these dynamics may encode continuous variation in the intensity of an internal aggressive state. Here, we report that these neurons also show line attractor dynamics in head-fixed mice observing aggression. We exploit this finding to identify and perturb line attractor-contributing neurons using 2-photon calcium imaging and holographic optogenetic perturbations. On-manifold perturbations demonstrate that integration and persistent activity are intrinsic properties of these neurons which drive the system along the line attractor, while transient off-manifold perturbations reveal rapid relaxation back into the attractor. Furthermore, stimulation and imaging reveal selective functional connectivity among attractor-contributing neurons. Intriguingly, individual differences among mice in line attractor stability were correlated with the degree of functional connectivity among contributing neurons. Mechanistic modelling indicates that dense subnetwork connectivity and slow neurotransmission are required to explain our empirical findings. Our work bridges circuit and manifold paradigms, shedding light on the intrinsic and operational dynamics of a behaviorally relevant mammalian line attractor.

13.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39211219

RESUMO

Classical decision models assume that the parameters giving rise to choice behavior are stable, yet emerging research suggests these parameters may fluctuate over time. Such fluctuations, observed in neural activity and behavioral strategies, have significant implications for understanding decision-making processes. However, empirical studies on fluctuating human decision-making strategies have been limited due to the extensive data requirements for estimating these fluctuations. Here, we introduce hMFC (Hierarchical Model for Fluctuations in Criterion), a Bayesian framework designed to estimate slow fluctuations in the decision criterion from limited data. We first showcase the importance of considering fluctuations in decision criterion: incorrectly assuming a stable criterion gives rise to apparent history effects and underestimates perceptual sensitivity. We then present a hierarchical estimation procedure capable of reliably recovering the underlying state of the fluctuating decision criterion with as few as 500 trials per participant, offering a robust tool for researchers with typical human datasets. Critically, hMFC does not only accurately recover the state of the underlying decision criterion, it also effectively deals with the confounds caused by criterion fluctuations. Lastly, we provide code and a comprehensive demo to enable widespread application of hMFC in decision-making research.

14.
bioRxiv ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39091788

RESUMO

The goal of theoretical neuroscience is to develop models that help us better understand biological intelligence. Such models range broadly in complexity and biological detail. For example, task-optimized recurrent neural networks (RNNs) have generated hypotheses about how the brain may perform various computations, but these models typically assume a fixed weight matrix representing the synaptic connectivity between neurons. From decades of neuroscience research, we know that synaptic weights are constantly changing, controlled in part by chemicals such as neuromodulators. In this work we explore the computational implications of synaptic gain scaling, a form of neuromodulation, using task-optimized low-rank RNNs. In our neuromodulated RNN (NM-RNN) model, a neuromodulatory subnetwork outputs a low-dimensional neuromodulatory signal that dynamically scales the low-rank recurrent weights of an output-generating RNN. In empirical experiments, we find that the structured flexibility in the NM-RNN allows it to both train and generalize with a higher degree of accuracy than low-rank RNNs on a set of canonical tasks. Additionally, via theoretical analyses we show how neuromodulatory gain scaling endows networks with gating mechanisms commonly found in artificial RNNs. We end by analyzing the low-rank dynamics of trained NM-RNNs, to show how task computations are distributed.

15.
Nat Neurosci ; 27(9): 1645-1655, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054370

RESUMO

The most influential account of phasic dopamine holds that it reports reward prediction errors (RPEs). The RPE-based interpretation of dopamine signaling is, in its original form, probably too simple and fails to explain all the properties of phasic dopamine observed in behaving animals. This Perspective helps to resolve some of the conflicting interpretations of dopamine that currently exist in the literature. We focus on the following three empirical challenges to the RPE theory of dopamine: why does dopamine (1) ramp up as animals approach rewards, (2) respond to sensory and motor features and (3) influence action selection? We argue that the prediction error concept, once it has been suitably modified and generalized based on an analysis of each computational problem, answers each challenge. Nonetheless, there are a number of additional empirical findings that appear to demand fundamentally different theoretical explanations beyond encoding RPE. Therefore, looking forward, we discuss the prospects for a unifying theory that respects the diversity of dopamine signaling and function as well as the complex circuitry that both underlies and responds to dopaminergic transmission.


Assuntos
Dopamina , Recompensa , Dopamina/metabolismo , Animais , Humanos , Modelos Neurológicos
16.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292695

RESUMO

Cyclic changes in hormonal state are well-known to regulate mating behavior during the female reproductive cycle, but whether and how these changes affect the dynamics of neural activity in the female brain is largely unknown. The ventromedial hypothalamus, ventro-lateral subdivision (VMHvl) contains a subpopulation of VMHvl Esr1+,Npy2r- neurons that controls female sexual receptivity. Longitudinal single cell calcium imaging of these neurons across the estrus cycle revealed that overlapping but distinct subpopulations were active during proestrus (mating-accepting) vs. non-proestrus (rejecting) phases. Dynamical systems analysis of imaging data from proestrus females uncovered a dimension with slow ramping activity, which generated approximate line attractor-like dynamics in neural state space. During mating, the neural population vector progressed along this attractor as male mounting and intromission proceeded. Attractor-like dynamics disappeared in non-proestrus states and reappeared following re-entry into proestrus. They were also absent in ovariectomized females but were restored by hormone priming. These observations reveal that hypothalamic line attractor-like dynamics are associated with female sexual receptivity and can be reversibly regulated by sex hormones, demonstrating that attractor dynamics can be flexibly modulated by physiological state. They also suggest a potential mechanism for the neural encoding of female sexual arousal.

17.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732217

RESUMO

The ability to make advantageous decisions is critical for animals to ensure their survival. Patch foraging is a natural decision-making process in which animals decide when to leave a patch of depleting resources to search for a new one. To study the algorithmic and neural basis of patch foraging behavior in a controlled laboratory setting, we developed a virtual foraging task for head-fixed mice. Mouse behavior could be explained by ramp-to-threshold models integrating time and rewards antagonistically. Accurate behavioral modeling required inclusion of a slowly varying "patience" variable, which modulated sensitivity to time. To investigate the neural basis of this decision-making process, we performed dense electrophysiological recordings with Neuropixels probes broadly throughout frontal cortex and underlying subcortical areas. We found that decision variables from the reward integrator model were represented in neural activity, most robustly in frontal cortical areas. Regression modeling followed by unsupervised clustering identified a subset of neurons with ramping activity. These neurons' firing rates ramped up gradually in single trials over long time scales (up to tens of seconds), were inhibited by rewards, and were better described as being generated by a continuous ramp rather than a discrete stepping process. Together, these results identify reward integration via a continuous ramping process in frontal cortex as a likely candidate for the mechanism by which the mammalian brain solves patch foraging problems.

18.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066383

RESUMO

To behave adaptively, animals must learn to predict future reward, or value. To do this, animals are thought to learn reward predictions using reinforcement learning. However, in contrast to classical models, animals must learn to estimate value using only incomplete state information. Previous work suggests that animals estimate value in partially observable tasks by first forming "beliefs"-optimal Bayesian estimates of the hidden states in the task. Although this is one way to solve the problem of partial observability, it is not the only way, nor is it the most computationally scalable solution in complex, real-world environments. Here we show that a recurrent neural network (RNN) can learn to estimate value directly from observations, generating reward prediction errors that resemble those observed experimentally, without any explicit objective of estimating beliefs. We integrate statistical, functional, and dynamical systems perspectives on beliefs to show that the RNN's learned representation encodes belief information, but only when the RNN's capacity is sufficiently large. These results illustrate how animals can estimate value in tasks without explicitly estimating beliefs, yielding a representation useful for systems with limited capacity. Author Summary: Natural environments are full of uncertainty. For example, just because my fridge had food in it yesterday does not mean it will have food today. Despite such uncertainty, animals can estimate which states and actions are the most valuable. Previous work suggests that animals estimate value using a brain area called the basal ganglia, using a process resembling a reinforcement learning algorithm called TD learning. However, traditional reinforcement learning algorithms cannot accurately estimate value in environments with state uncertainty (e.g., when my fridge's contents are unknown). One way around this problem is if agents form "beliefs," a probabilistic estimate of how likely each state is, given any observations so far. However, estimating beliefs is a demanding process that may not be possible for animals in more complex environments. Here we show that an artificial recurrent neural network (RNN) trained with TD learning can estimate value from observations, without explicitly estimating beliefs. The trained RNN's error signals resembled the neural activity of dopamine neurons measured during the same task. Importantly, the RNN's activity resembled beliefs, but only when the RNN had enough capacity. This work illustrates how animals could estimate value in uncertain environments without needing to first form beliefs, which may be useful in environments where computing the true beliefs is too costly.

19.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993589

RESUMO

Keypoint tracking algorithms have revolutionized the analysis of animal behavior, enabling investigators to flexibly quantify behavioral dynamics from conventional video recordings obtained in a wide variety of settings. However, it remains unclear how to parse continuous keypoint data into the modules out of which behavior is organized. This challenge is particularly acute because keypoint data is susceptible to high frequency jitter that clustering algorithms can mistake for transitions between behavioral modules. Here we present keypoint-MoSeq, a machine learning-based platform for identifying behavioral modules ("syllables") from keypoint data without human supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise from behavior, enabling it to effectively identify syllables whose boundaries correspond to natural sub-second discontinuities inherent to mouse behavior. Keypoint-MoSeq outperforms commonly used alternative clustering methods at identifying these transitions, at capturing correlations between neural activity and behavior, and at classifying either solitary or social behaviors in accordance with human annotations. Keypoint-MoSeq therefore renders behavioral syllables and grammar accessible to the many researchers who use standard video to capture animal behavior.

20.
Neuron ; 110(4): 568-570, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35176241

RESUMO

In this issue of Neuron, Krause and Drugowitsch (2022) present a novel approach to classifying sharp-wave ripples and find that far more encode spatial trajectories than previously thought. Their method compares a host of state-space models using what Bayesian statisticians call the model evidence.


Assuntos
Neurônios , Potenciais de Ação/fisiologia , Teorema de Bayes , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA