Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2311700120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175863

RESUMO

The ionizable-lipid component of RNA-containing nanoparticles controls the pH-dependent behavior necessary for an efficient delivery of the cargo-the so-called endosomal escape. However, it is still an empirical exercise to identify optimally performing lipids. Here, we study two well-known ionizable lipids, DLin-MC3-DMA and DLin-DMA using a combination of experiments, multiscale computer simulations, and electrostatic theory. All-atom molecular dynamics simulations, and experimentally measured polar headgroup pKa values, are used to develop a coarse-grained representation of the lipids, which enables the investigation of the pH-dependent behavior of lipid nanoparticles (LNPs) through Monte Carlo simulations, in the absence and presence of RNA molecules. Our results show that the charge state of the lipids is determined by the interplay between lipid shape and headgroup chemistry, providing an explanation for the similar pH-dependent ionization state observed for lipids with headgroup pKa values about one-pH-unit apart. The pH dependence of lipid ionization is significantly influenced by the presence of RNA, whereby charge neutrality is achieved by imparting a finite and constant charge per lipid at intermediate pH values. The simulation results are experimentally supported by measurements of α-carbon 13C-NMR chemical shifts for eGFP mRNA LNPs of both DLin-MC3-DMA and DLin-DMA at various pH conditions. Further, we evaluate the applicability of a mean-field Poisson-Boltzmann theory to capture these phenomena.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , RNA Mensageiro/genética , RNA Mensageiro/química , RNA Interferente Pequeno/genética , Nanopartículas/química , Simulação de Dinâmica Molecular , Concentração de Íons de Hidrogênio
2.
Proc Natl Acad Sci U S A ; 120(50): e2310491120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055742

RESUMO

Lipid nanoparticles (LNPs) are advanced core-shell particles for messenger RNA (mRNA) based therapies that are made of polyethylene glycol (PEG) lipid, distearoylphosphatidylcholine (DSPC), cationic ionizable lipid (CIL), cholesterol (chol), and mRNA. Yet the mechanism of pH-dependent response that is believed to cause endosomal release of LNPs is not well understood. Here, we show that eGFP (enhanced green fluorescent protein) protein expression in the mouse liver mediated by the ionizable lipids DLin-MC3-DMA (MC3), DLin-KC2-DMA (KC2), and DLinDMA (DD) ranks MC3 ≥ KC2 > DD despite similar delivery of mRNA per cell in all cell fractions isolated. We hypothesize that the three CIL-LNPs react differently to pH changes and hence study the structure of CIL/chol bulk phases in water. Using synchrotron X-ray scattering a sequence of ordered CIL/chol mesophases with lowering pH values are observed. These phases show isotropic inverse micellar, cubic Fd3m inverse micellar, inverse hexagonal [Formula: see text] and bicontinuous cubic Pn3m symmetry. If polyadenylic acid, as mRNA surrogate, is added to CIL/chol, excess lipid coexists with a condensed nucleic acid lipid [Formula: see text] phase. The next-neighbor distance in the excess phase shows a discontinuity at the Fd3m inverse micellar to inverse hexagonal [Formula: see text] transition occurring at pH 6 with distinctly larger spacing and hydration for DD vs. MC3 and KC2. In mRNA LNPs, DD showed larger internal spacing, as well as retarded onset and reduced level of DD-LNP-mediated eGFP expression in vitro compared to MC3 and KC2. Our data suggest that the pH-driven Fd3m-[Formula: see text] transition in bulk phases is a hallmark of CIL-specific differences in mRNA LNP efficacy.


Assuntos
Lipossomos , Nanopartículas , Animais , Camundongos , Nanopartículas/química , Micelas , Concentração de Íons de Hidrogênio , RNA Mensageiro/genética , RNA Mensageiro/química , RNA Interferente Pequeno/genética
3.
RNA ; 28(3): 433-446, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949721

RESUMO

Detection of nucleic acids within subcellular compartments is key to understanding their function. Determining the intracellular distribution of nucleic acids requires quantitative retention and estimation of their association with different organelles by immunofluorescence microscopy. This is particularly important for the delivery of nucleic acid therapeutics, which depends on endocytic uptake and endosomal escape. However, the current protocols fail to preserve the majority of exogenously delivered nucleic acids in the cytoplasm. To solve this problem, by monitoring Cy5-labeled mRNA delivered to primary human adipocytes via lipid nanoparticles (LNP), we optimized cell fixation, permeabilization, and immunostaining of a number of organelle markers, achieving quantitative retention of mRNA and allowing visualization of levels that escape detection using conventional procedures. The optimized protocol proved effective on exogenously delivered siRNA, miRNA, as well as endogenous miRNA. Our protocol is compatible with RNA probes of single molecule fluorescence in situ hybridization (smFISH) and molecular beacon, thus demonstrating that it is broadly applicable to study a variety of nucleic acids in cultured cells.


Assuntos
Imunofluorescência/métodos , Hibridização in Situ Fluorescente/métodos , RNA/metabolismo , Células Cultivadas , Fixadores/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Nanopartículas/química , RNA/química , Processamento Pós-Transcricional do RNA , Transporte de RNA
4.
Mol Pharm ; 20(2): 1138-1155, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36653946

RESUMO

Hydrophobic ion pairing (HIP) can successfully increase the drug loading and control the release kinetics of ionizable hydrophilic drugs, addressing challenges that prevent these molecules from reaching the clinic. Nevertheless, polymeric nanoparticle (PNP) formulation development requires trial-and-error experimentation to meet the target product profile, which is laborious and costly. Herein, we design a preformulation framework (solid-state screening, computational approach, and solubility in PNP-forming emulsion) to understand counterion-drug-polymer interactions and accelerate the PNP formulation development for HIP systems. The HIP interactions between a small hydrophilic molecule, AZD2811, and counterions with different molecular structures were investigated. Cyclic counterions formed amorphous ion pairs with AZD2811; the 0.7 pamoic acid/1.0 AZD2811 complex had the highest glass transition temperature (Tg; 162 °C) and the greatest drug loading (22%) and remained as phase-separated amorphous nanosized domains inside the polymer matrix. Palmitic acid (linear counterion) showed negligible interactions with AZD2811 (crystalline-free drug/counterion forms), leading to a significantly lower drug loading despite having similar log P and pKa with pamoic acid. Computational calculations illustrated that cyclic counterions interact more strongly with AZD2811 than linear counterions through dispersive interactions (offset π-π interactions). Solubility data indicated that the pamoic acid/AZD2811 complex has a lower organic phase solubility than AZD2811-free base; hence, it may be expected to precipitate more rapidly in the nanodroplets, thus increasing drug loading. Our work provides a generalizable preformulation framework, complementing traditional performance-indicating parameters, to identify optimal counterions rapidly and accelerate the development of hydrophilic drug PNP formulations while achieving high drug loading without laborious trial-and-error experimentation.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Naftóis/química , Nanopartículas/química , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Liberação Controlada de Fármacos
5.
Proc Natl Acad Sci U S A ; 115(15): E3351-E3360, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29588418

RESUMO

The development of safe and efficacious gene vectors has limited greatly the potential for therapeutic treatments based on messenger RNA (mRNA). Lipid nanoparticles (LNPs) formed by an ionizable cationic lipid (here DLin-MC3-DMA), helper lipids (distearoylphosphatidylcholine, DSPC, and cholesterol), and a poly(ethylene glycol) (PEG) lipid have been identified as very promising delivery vectors of short interfering RNA (siRNA) in different clinical phases; however, delivery of high-molecular weight RNA has been proven much more demanding. Herein we elucidate the structure of hEPO modified mRNA-containing LNPs of different sizes and show how structural differences affect transfection of human adipocytes and hepatocytes, two clinically relevant cell types. Employing small-angle scattering, we demonstrate that LNPs have a disordered inverse hexagonal internal structure with a characteristic distance around 6 nm in presence of mRNA, whereas LNPs containing no mRNA do not display this structure. Furthermore, using contrast variation small-angle neutron scattering, we show that one of the lipid components, DSPC, is localized mainly at the surface of mRNA-containing LNPs. By varying LNP size and surface composition we demonstrate that both size and structure have significant influence on intracellular protein production. As an example, in both human adipocytes and hepatocytes, protein expression levels for 130 nm LNPs can differ as much as 50-fold depending on their surface characteristics, likely due to a difference in the ability of LNP fusion with the early endosome membrane. We consider these discoveries to be fundamental and opening up new possibilities for rational design of synthetic nanoscopic vehicles for mRNA delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Eritropoetina/genética , Hepatócitos/metabolismo , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/genética , Adipócitos/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Eritropoetina/metabolismo , Humanos , Tamanho da Partícula , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Transfecção
6.
Nanomedicine ; 13(8): 2565-2574, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28754465

RESUMO

Liposome-based drug formulations represent an exciting avenue of research as they increase efficacy to toxicity ratios. Current formulations rely on passive accumulation to the disease site where drug is taken up by the cells. Ligand mediated targeting increases the net accumulation of liposomes, however, an unexplored benefit is to potentially refine pharmacodynamics (PD) of a drug specifically to different cell types within diseased tissue. As a model system, we engineered cardiomyocyte- (I-1) and endothelial-targeted (B-40) liposomes to carry a VEGFR2 inhibitor (PTK787), and examined the effect of cell type-specific delivery on both pharmacokinetics (PK) and PD. Neovascularization in post-myocardial infarction was significantly reduced by B-40 liposomes loaded with PTK787 as compared to animals injected with I-1 liposomes, and profoundly more as compared to free PTK787. This study thus shows that the intraorgan targeting of drugs through cell type-specific delivery holds substantial promise towards lowering the minimal efficacious dose administered systemically.


Assuntos
Lipossomos/química , Peptídeos/química , Ftalazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Camundongos , Infarto do Miocárdio/complicações , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/etiologia , Biblioteca de Peptídeos , Ftalazinas/farmacocinética , Ftalazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacocinética , Piridinas/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
7.
Angew Chem Int Ed Engl ; 54(49): 14681-4, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25809644

RESUMO

Secondary nucleation, wherein crystal seeds are used to induce crystallization, is widely employed in industrial crystallizations. Despite its significance, our understanding of the process, particularly at the molecular level, remains rudimentary. An outstanding question is why do a few seeds give rise to a many-fold increase in new crystals? Using molecular simulation coupled with experiments we have uncovered the molecular processes that give rise to this autocatalytic behavior. The simulations reveal formation of molecular aggregates in solution, which on coming in contact with the surface of the seed undergo nucleation to form new crystallites. These crystallites are weakly bound to the crystal surface and can be readily sheared by fluid, making the seed surfaces available again to repeat the process. Further, the new crystallites on development can in turn serve as seeds. This mechanistic insight will enable better control in engineering crystalline products to design.

8.
ACS Nano ; 17(24): 24725-24742, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088920

RESUMO

Polycatecholamine coatings have attracted significant attention in the past 10 years owing to their ability to functionalize a wide range of materials. Here we apply the use of such coatings to drug nanocrystals, made from a poorly soluble drug compound, to postfunctionalize the nanocrystal surface with the aim of providing steric stabilization and extending their circulation time after intravenous injection. We show that both polydopamine and polynorepinephrine can be used to successfully modify drug nanocrystals and subsequently incorporate end-functionalized PEG to the surface. Even though high grafting densities of PEG were achieved, we observed rapid clearance and increased liver uptake for polycatecholamine functionalized drug nanocrystals. Using both surface sensitive model systems and protein corona profiling, we determine that the rapid clearance was correlated with an increase in adsorption of proteins involved in coagulation to the polycatecholamine surface, with fibrinogen being the most abundant. Further analysis of the most abundant proteins revealed a significant increase in thiol-rich proteins on polycatecholamine coated surfaces. The observed interaction with coagulation proteins highlights one of the current challenges using polycatecholamines for drug delivery but might also provide insights to the growing use of these materials in hemostatic applications.


Assuntos
Hemostáticos , Nanopartículas , Coroa de Proteína , Polietilenoglicóis/química , Fibrinogênio , Coroa de Proteína/química , Nanopartículas/química
9.
Adv Sci (Weinh) ; 10(12): e2206187, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806740

RESUMO

Lipid nanoparticles (LNPs) are currently used to transport functional mRNAs, such as COVID-19 mRNA vaccines. The delivery of angiogenic molecules, such as therapeutic VEGF-A mRNA, to ischemic tissues for producing new blood vessels is an emerging strategy for the treatment of cardiovascular diseases. Here, the authors deliver VEGF-A mRNA via LNPs and study stoichiometric quantification of their uptake kinetics and how the transport of exogenous LNP-mRNAs between cells is functionally extended by cells' own vehicles called extracellular vesicles (EVs). The results show that cellular uptake of LNPs and their mRNA molecules occurs quickly, and that the translation of exogenously delivered mRNA begins immediately. Following the VEGF-A mRNA delivery to cells via LNPs, a fraction of internalized VEGF-A mRNA is secreted via EVs. The overexpressed VEGF-A mRNA is detected in EVs secreted from three different cell types. Additionally, RNA-Seq analysis reveals that as cells' response to LNP-VEGF-A mRNA treatment, several overexpressed proangiogenic transcripts are packaged into EVs. EVs are further deployed to deliver VEGF-A mRNA in vitro and in vivo. Upon equal amount of VEGF-A mRNA delivery via three EV types or LNPs in vitro, EVs from cardiac progenitor cells are the most efficient in promoting angiogenesis per amount of VEGF-A protein produced. Intravenous administration of luciferase mRNA shows that EVs could distribute translatable mRNA to different organs with the highest amounts of luciferase detected in the liver. Direct injections of VEGF-A mRNA (via EVs or LNPs) into mice heart result in locally produced VEGF-A protein without spillover to liver and circulation. In addition, EVs from cardiac progenitor cells cause minimal production of inflammatory cytokines in cardiac tissue compared with all other treatment types. Collectively, the data demonstrate that LNPs transform EVs as functional extensions to distribute therapeutic mRNA between cells, where EVs deliver this mRNA differently than LNPs.


Assuntos
COVID-19 , Vesículas Extracelulares , Camundongos , Animais , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , COVID-19/metabolismo , Vesículas Extracelulares/metabolismo
10.
Mol Pharm ; 9(5): 1052-66, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22384832

RESUMO

Dissolution models require, at their core, an accurate diffusion model. The accuracy of the model for diffusion-dominated dissolution is particularly important with the trend toward micro- and nanoscale drug particles. Often such models are based on the concept of a "diffusion layer." Here a framework is developed for diffusion-dominated dissolution models, and we discuss the inadequacy of classical models that are based on an unphysical constant diffusion layer thickness assumption, or do not correctly modify dissolution rate due to "confinement effects": (1) the increase in bulk concentration from confinement of the dissolution process, (2) the modification of the flux model (the Sherwood number) by confinement. We derive the exact mathematical solution for a spherical particle in a confined fluid with impermeable boundaries. Using this solution, we analyze the accuracy of a time-dependent "infinite domain model" (IDM) and "quasi steady-state model" (QSM), both formally derived for infinite domains but which can be applied in approximate fashion to confined dissolution with proper adjustment of a concentration parameter. We show that dissolution rate is sensitive to the degree of confinement or, equivalently, to the total concentration C(tot). The most practical model, the QSM, is shown to be very accurate for most applications and, consequently, can be used with confidence in design-level dissolution models so long as confinement is accurately treated. The QSM predicts the ratio of diffusion layer thickness to particle radius (the Sherwood number) as a constant plus a correction that depends on the degree of confinement. The QSM also predicts that the time required for complete saturation or dissolution in diffusion-controlled dissolution experiments is singular (i.e., infinite) when total concentration equals the solubility. Using the QSM, we show that measured differences in dissolution rate in a diffusion-controlled dissolution experiment are a result of differences in the degree of confinement on the increase in bulk concentration independent of container geometry and polydisperse vs single particle dissolution. We conclude that the constant diffusion-layer thickness assumption is incorrect in principle and should be replaced by the QSM with accurate treatment of confinement in models of diffusion-controlled dissolution.


Assuntos
Modelos Teóricos , Difusão , Solubilidade
11.
Mol Pharm ; 9(10): 2903-11, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22954025

RESUMO

The purpose of this study was to investigate in vivo intestinal precipitation of a model drug mebendazole, a basic BCS class II drug, using dogs with intestinal stomas for administration or sampling. After oral administration of a solution with an expected intestinal supersaturation of approximately 20 times the solubility, the measured supersaturation in dog intestinal fluid (DIF) was up to 10 times and, on average, only 11% of the given dose was retrieved as solid drug in the collected fluid from the stoma. The drug was rapidly absorbed with >90% of the total systemic exposure reached within three hours after duodenal administration of a solution. In silico absorption modeling showed that in vivo data were reasonably well described by a nonprecipitating solution. An in vitro model of precipitation in DIF predicted that the intestinal concentration of dissolved mebendazole would be less than 1/5 of the initial concentration within 10 min at concentrations comparable to in vivo. It was concluded that intestinal precipitation did not have any major influence on mebendazole absorption. The extent of precipitation was overpredicted in vitro given the in vivo absorption rate, and further work is needed to identify in vitro factors that could enable more accurate in vivo predictions of intestinal precipitation from solutions.


Assuntos
Mucosa Intestinal/metabolismo , Mebendazol/farmacocinética , Administração Oral , Animais , Cães , Feminino , Absorção Intestinal , Masculino , Mebendazol/administração & dosagem , Modelos Biológicos , Soluções/metabolismo
12.
J Colloid Interface Sci ; 610: 766-774, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848062

RESUMO

Lipid nanoparticles (LNPs) are promising drug and gene carriers. Upon intravenous administration, LNPs' experience different degree of cellular uptake depending on their formulation. Currently, in vitro and in vivo studies are the gold standard for assessing the fate of nano carriers once administered, but they are time consuming and expensive. In this work, we propose a time and cost-effective method to screen a wide range of LNP formulations and select the most promising candidates for in vitro and in vivo studies. Two different approaches were explored to investigate the binding affinity between LNPs and serum proteins using sensor functionalisation with either protein specific antibody or PEG specific antibody. The first approach allowed to identify the presence of a specific protein in the protein corona of lipid particles (reconstituted and native high-density lipoproteins (rHDL and HDL), and low-density lipoproteins LDL); while the second one provided a versatile platform for the immobilisation of pegylated-particles in order to follow the interaction with serum proteins and hence predict the composition of LNP protein corona. Sensing was done using Quartz Crystal Microbalance with Dissipation (QCM-D) but the approach is extendable to other surface sensing techniques such as Surface Plasmon Resonance (SPR) or ellipsometry.


Assuntos
Proteínas Sanguíneas/metabolismo , Lipídeos , Nanopartículas , Humanos , Lipossomos , Ligação Proteica
13.
Front Physiol ; 13: 926422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117711

RESUMO

Background: Recent experimental data support the view that signaling activity at the membrane depends on its geometric parameters such as surface area and curvature. However, a mathematical, biophysical concept linking shape to receptor signaling is missing. The membranes of cardiomyocytes are constantly reshaped due to cycles of contraction and relaxation. According to constant-volume behavior of cardiomyocyte contraction, the length shortening is compensated by Z-disc myofilament lattice expansion and dynamic deformation of membrane between two adjacent Z-discs. Both morphological changes are strongly dependent on the frequency of contraction. Here, we developed the hypothesis that dynamic geometry of cardiomyocytes could be important for their plasticity and signaling. This effect may depend on the frequency of the beating heart and may represent a novel concept to explain how changes in frequency affect cardiac signaling. Methods: This hypothesis is almost impossible to answer with experiments, as the in-vitro cardiomyocytes are almost two-dimensional and flattened rather than being in their real in-vivo shape. Therefore, we designed a COMSOL multiphysics program to mathematically model the dynamic geometry of a human cardiomyocyte and explore whether the beating frequency can modulate membrane signal transduction. Src kinase is an important component of cardiac mechanotransduction. We first presented that Src mainly localizes at costameres. Then, the frequency-dependent signaling effect was studied mathematically by numerical simulation of Src-mediated PDGFR signaling pathway. The reaction-convection-diffusion partial differential equation was formulated to simulate PDGFR pathway in a contracting sarcomeric disc for a range of frequencies from 1 to 4 Hz. Results: Simulations exhibits higher concentration of phospho-Src when a cardiomyocyte beats with higher rates. The calculated phospho-Src concentration at 4, 2, and 1 Hz beat rates, comparing to 0 Hz, was 21.5%, 9.4%, and 4.7% higher, respectively. Conclusion: Here we provide mathematical evidence for a novel concept in biology. Cell shape directly translates into signaling, an effect of importance particularly for the myocardium, where cells continuously reshape their membranes. The concept of locality of surface-to-volume ratios is demonstrated to lead to changes in membrane-mediated signaling and may help to explain the remarkable plasticity of the myocardium in response to biomechanical stress.

14.
ACS Nano ; 16(12): 20163-20173, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36511601

RESUMO

Lipid nanoparticles (LNPs) have emerged as potent carriers for mRNA delivery, but several challenges remain before this approach can offer broad clinical translation of mRNA therapeutics. To improve their efficacy, a better understanding is required regarding how LNPs are trapped and processed at the anionic endosomal membrane prior to mRNA release. We used surface-sensitive fluorescence microscopy with single LNP resolution to investigate the pH dependency of the binding kinetics of ionizable lipid-containing LNPs to a supported endosomal model membrane. A sharp increase of LNP binding was observed when the pH was lowered from 6 to 5, accompanied by stepwise large-scale LNP disintegration. For LNPs preincubated in serum, protein corona formation shifted the onset of LNP binding and subsequent disintegration to lower pH, an effect that was less pronounced for lipoprotein-depleted serum. The LNP binding to the endosomal membrane mimic was observed to eventually become severely limited by suppression of the driving force for the formation of multivalent bonds during LNP attachment or, more specifically, by charge neutralization of anionic lipids in the model membrane due to their association with cationic lipids from earlier attached LNPs upon their disintegration. Cell uptake experiments demonstrated marginal differences in LNP uptake in untreated and lipoprotein-depleted serum, whereas lipoprotein-depleted serum increased mRNA-controlled protein (eGFP) production substantially. This complies with model membrane data and suggests that protein corona formation on the surface of the LNPs influences the nature of the interaction between LNPs and endosomal membranes.


Assuntos
Nanopartículas , Coroa de Proteína , Lipídeos/química , Cinética , RNA Mensageiro/genética , Lipoproteínas , Nanopartículas/química , Concentração de Íons de Hidrogênio , RNA Interferente Pequeno/genética
15.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34882187

RESUMO

Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.


Assuntos
Endocitose , Endossomos/metabolismo , Lipossomos/metabolismo , Nanopartículas/metabolismo , RNA Mensageiro/metabolismo , Células HeLa , Humanos , RNA Mensageiro/genética , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
16.
ACS Nano ; 15(4): 6709-6722, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33754708

RESUMO

Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid. The structural characterization of mRNA-containing LNPs (mRNA-LNPs) is crucial for a full understanding of the way in which they function, but this information alone is not enough to predict their fate upon entering the bloodstream. The biodistribution and cellular uptake of LNPs are affected by their surface composition as well as by the extracellular proteins present at the site of LNP administration, e.g., apolipoproteinE (ApoE). ApoE, being responsible for fat transport in the body, plays a key role in the LNP's plasma circulation time. In this work, we use small-angle neutron scattering, together with selective lipid, cholesterol, and solvent deuteration, to elucidate the structure of the LNP and the distribution of the lipid components in the absence and the presence of ApoE. While DSPC and cholesterol are found to be enriched at the surface of the LNPs in buffer, binding of ApoE induces a redistribution of the lipids at the shell and the core, which also impacts the LNP internal structure, causing release of mRNA. The rearrangement of LNP components upon ApoE incubation is discussed in terms of potential relevance to LNP endosomal escape.


Assuntos
Nanopartículas , Apolipoproteínas E/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Distribuição Tecidual
17.
Mol Ther Nucleic Acids ; 24: 369-384, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33868782

RESUMO

Lipid nanoparticles (LNPs) are the most clinically advanced delivery system for RNA-based drugs but have predominantly been investigated for intravenous and intramuscular administration. Subcutaneous administration opens the possibility of patient self-administration and hence long-term chronic treatment that could enable messenger RNA (mRNA) to be used as a novel modality for protein replacement or regenerative therapies. In this study, we show that subcutaneous administration of mRNA formulated within LNPs can result in measurable plasma exposure of a secreted protein. However, subcutaneous administration of mRNA formulated within LNPs was observed to be associated with dose-limiting inflammatory responses. To overcome this limitation, we investigated the concept of incorporating aliphatic ester prodrugs of anti-inflammatory steroids within LNPs, i.e., functionalized LNPs to suppress the inflammatory response. We show that the effectiveness of this approach depends on the alkyl chain length of the ester prodrug, which determines its retention at the site of administration. An unexpected additional benefit to this approach is the prolongation observed in the duration of protein expression. Our results demonstrate that subcutaneous administration of mRNA formulated in functionalized LNPs is a viable approach to achieving systemic levels of therapeutic proteins, which has the added benefits of being amenable to self-administration when chronic treatment is required.

18.
Pharm Res ; 27(10): 2119-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20717839

RESUMO

PURPOSE: To investigate the prediction accuracy of in vitro and in vitro/in silico methods for in vivo intestinal precipitation of basic BCS class II drugs in humans. METHODS: Precipitation rate of a model drug substance, AZD0865 (pKa = 6.1; log K(D) = 4.2), was investigated in vitro using simulated intestinal media, and calculations of the crystallization rates were made with a theoretical model. Human intestinal precipitation was estimated by analysis of pharmacokinetic data from clinical studies at different doses. RESULTS: All in vitro models predicted rapid drug precipitation, where the intestinal concentration of dissolved AZD0865 at the highest dose tested was expected to decrease to half after less than 20 min. However, there was no indication of precipitation in vivo in humans as there was a dose proportional increase in drug plasma exposure. The theoretical model predicted no significant precipitation within the range of expected in vivo intestinal concentrations. CONCLUSIONS: This study indicated that simple in vitro methods of in vivo precipitation of orally administered bases overpredict the intestinal crystalline precipitation in vivo in humans. Hydrodynamic conditions were identified as one important factor that needs to be better addressed in future in vivo predictive methods.


Assuntos
Imidazóis/farmacocinética , Mucosa Intestinal/metabolismo , Modelos Biológicos , Piridinas/farmacocinética , Disponibilidade Biológica , Líquidos Corporais/metabolismo , Varredura Diferencial de Calorimetria , Precipitação Química , Cristalização , Humanos , Imidazóis/administração & dosagem , Imidazóis/sangue , Imidazóis/química , Masculino , Estrutura Molecular , Piridinas/administração & dosagem , Piridinas/sangue , Piridinas/química , Solubilidade , Distribuição Tecidual
19.
J Comput Chem ; 30(12): 1859-71, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19115279

RESUMO

In view of the extreme importance of reliable computational prediction of aqueous drug solubility, we have established a Monte Carlo simulation procedure which appears, in principle, to yield reliable solubilities even for complex drug molecules. A theory based on judicious application of linear response and mean field approximations has been found to reproduce the computationally demanding free energy determinations by simulation while at the same time offering mechanistic insight. The focus here is on the suitability of the model of both drug and solvent, i.e., the force fields. The optimized potentials for liquid simulations all atom (OPLS-AA) force field, either intact or combined with partial charges determined either by semiempirical AM1/CM1A calculations or taken from the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field has been used. The results illustrate the crucial role of the force field in determining drug solubilities. The errors in interaction energies obtained by the simple force fields tested here are still found to be too large for our purpose but if a component of this error is systematic and readily removed by empirical adjustment the results are significantly improved. In fact, consistent use of the OPLS-AA Lennard-Jones force field parameters with partial charges from the COMPASS force field will in this way produce good predictions of amorphous drug solubility within 1 day on a standard desktop PC. This is shown here by the results of extensive new simulations for a total of 47 drug molecules which were also improved by increasing the water box in the hydration simulations from 500 to 2000 water molecules.


Assuntos
Preparações Farmacêuticas/química , Solventes/química , Água/química , Simulação por Computador , Cristalização , Modelos Químicos , Estrutura Molecular , Método de Monte Carlo , Solubilidade , Termodinâmica
20.
J Control Release ; 296: 29-39, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30611901

RESUMO

Lymphocytes play a central role in the pathology of a range of chronic conditions such as autoimmune disease, transplant rejection, leukemia, lymphoma HIV/AIDs and cardiometabolic diseases such as atherosclerosis. Current treatments for lymphocyte-associated conditions are incompletely effective and/or complicated by a range of off-target toxicities. One major challenge is poor drug access to lymphocytes via the systemic blood and this may be attributed, at least in part, to the fact that lymphocytes are concentrated within lymph fluid and lymphoid tissues, particularly in gut-associated lymphatics. Here we demonstrate that promoting drug uptake into the intestinal lymphatics with a long chain fatty acid, thereby increasing lymphocyte access, enhances the pharmacodynamic effect of a highly lipophilic liver X receptor (LXR) agonist, WAY-252623, that has been suggested as a potential treatment for atherosclerosis. This has been exemplified by: (1) increased mRNA expression of key markers of LXR activation (ABCA1) and regulatory T cells (Foxp3) in local lymphatic lymphocytes and (2) enhanced numbers of CD4+CD25+Foxp3+ regulatory T cells in the systemic circulation, after administration of a 5-fold lower dose with a lymph directing lipid formulation when compared with a non-lipid containing formulation. These data suggest that combining lipophilic, lymphotropic drug candidates such as WAY-252,623, with lymph-directing long chain lipid based formulations can enhance drug targeting to, and activity on, lymphocytes in lymph and that this effect persists through to the systemic circulation. This presents a promising approach to achieve more selective and effective therapeutic outcomes for the treatment of lymphocyte associated diseases.


Assuntos
Indazóis/administração & dosagem , Intestinos/imunologia , Receptores X do Fígado/agonistas , Vasos Linfáticos/imunologia , Nanopartículas/administração & dosagem , Transportador 1 de Cassete de Ligação de ATP/genética , Administração Oral , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Expressão Gênica/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Indazóis/sangue , Indazóis/farmacocinética , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Masculino , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA