Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(35): e2311635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703033

RESUMO

Most properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe2 bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). For pristine material, a higher positive charge density located at the selenium atomic columns compared to the tungsten atomic columns is obtained and tentatively explained by a coherent scattering effect. Furthermore, the change in the electric field distribution induced by a missing selenium atomic column is investigated. A characteristic electric field distribution in the vicinity of the defect with locally reduced magnitudes compared to the pristine lattice is observed. This effect is accompanied by a considerable inward relaxation of the surrounding lattice, which according to first principles DFT calculation is fully compatible with a missing column of Se atoms. This shows that DPC imaging, as an electric field sensitive technique, provides additional and remarkable information to the otherwise only structural analysis obtained with conventional STEM imaging.

2.
Angew Chem Int Ed Engl ; 62(42): e202309618, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549374

RESUMO

Transition-metal nitrides/nitrenes are highly promising reagents for catalytic nitrogen-atom-transfer reactivity. They are typically prepared in situ upon optically induced N2 elimination from azido precursors. A full exploitation of their catalytic potential, however, requires in-depth knowledge of the primary photo-induced processes and the structural/electronic factors mediating the N2 loss with birth of the terminal metal-nitrogen core. Using femtosecond infrared spectroscopy, we elucidate here the primary molecular-level mechanisms responsible for the formation of a unique platinum(II) nitrene with a triplet ground state from a closed-shell platinum(II) azide precursor. The spectroscopic data in combination with quantum-chemical calculations provide compelling evidence that product formation requires the initial occupation of a singlet excited state with an anionic azide diradical ligand that is bound to a low-spin d8 -configured PtII ion. Subsequent intersystem crossing generates the Pt-bound triplet azide diradical, which smoothly evolves into the triplet nitrene via N2 loss in a near barrierless adiabatic dissociation. Our data highlight the importance of the productive, N2 -releasing state possessing azide ππ* character as a design principle for accessing efficient N-atom-transfer catalysts.

3.
J Chem Phys ; 156(9): 094505, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259913

RESUMO

The dynamics of vibrational relaxation of carbon dioxide in water has been studied using femtosecond mid-infrared pump-probe spectroscopy with excitation of the anti-symmetric stretching (ν3) fundamental state of the solute. The relaxation dynamics were recorded at a constant pressure of 500 bars and in the temperature range between 300 and 600 K, thereby covering the liquid-to-near-critical region of the solvent. The excited state of the ν3-mode is deactivated in two competing pathways: (i) direct relaxation to the ground state with resonant transfer of the excess vibrational energy into the bending-librational continuum of the water solvent and (ii) relaxation to the bending fundamental state with transfer into the intramolecular bending mode of H2O. The rate of pathway (i) decreases with increasing temperature, from ∼1/(9 ps) at 300 K to ∼(1/16 ps) at 600 K and obeys Fermi's golden rule strictly, provided that the spectral density of energy-accepting solvent states is derived from the stationary infrared absorption profile of H2O. The rate of pathway (ii) is 1/(23 ps) and assumed to be temperature-independent within our data analysis. Finally, the bending fundamental of CO2 can also relax to the ground state by resonantly transferring the remaining excess energy to the librational fundamentals of the solvent.

4.
Microsc Microanal ; 28(1): 185-195, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35042572

RESUMO

Colloidal nanosphere monolayers­used as a lithography mask for site-controlled material deposition or removal­offer the possibility of cost-effective patterning of large surface areas. In the present study, an automated analysis of scanning electron microscopy (SEM) images is described, which enables the recognition of the individual nanospheres in densely packed monolayers in order to perform a statistical quantification of the sphere size, mask opening size, and sphere-sphere separation distributions. Search algorithms based on Fourier transformation, cross-correlation, multiple-angle intensity profiling, and sphere edge point detection techniques allow for a sphere detection efficiency of at least 99.8%, even in the case of considerable sphere size variations. While the sphere positions and diameters are determined by fitting circles to the spheres edge points, the openings between sphere triples are detected by intensity thresholding. For the analyzed polystyrene sphere monolayers with sphere sizes between 220 and 600 nm and a diameter spread of around 3% coefficients of variation of 6.8­8.1% for the opening size are found. By correlating the mentioned size distributions, it is shown that, in this case, the dominant contribution to the opening size variation stems from nanometer-scale positional variations of the spheres.

5.
J Chem Phys ; 154(13): 134305, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33832237

RESUMO

The dynamics of intramolecular hydrogen-bonding involving sulfur atoms as acceptors is studied using two-dimensional infrared (2DIR) spectroscopy. The molecular system is a tertiary alcohol whose donating hydroxy group is embedded in a hydrogen-bond potential with torsional C3-symmetry about the carbon-oxygen bond. The linear and 2DIR-spectra recorded in the OH-stretching region of the alcohol can be simulated very well using Kubo's line shape theory based on the cumulant expansion for evaluating the linear and nonlinear optical response functions. The correlation function for OH-stretching frequency fluctuations reveals an ultrafast component decaying with a time constant of 700 fs, which is in line with the apparent decay of the center line slopes averaged over absorption and bleach/emission signals. In addition, a quasi-static inhomogeneity is detected, which prevents the 2DIR line shape to fully homogenize within the observation window of 4 ps. The experimental data were then analyzed in more detail using a full ab initio approach that merges time-dependent structural information from classical molecular dynamics (MD) simulations with an OH-stretching frequency map derived from density functional theory (DFT). The latter method was also used to obtain a complementary transition dipole map to account for non-Condon effects. The 2DIR-spectra obtained from the MD/DFT method are in good agreement with the experimental data at early waiting delays, thereby corroborating an assignment of the fast decay of the correlation function to the dynamics of hydrogen-bond breakage and formation.

6.
Inorg Chem ; 59(20): 14629-14642, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32395987

RESUMO

Vibrational energy relaxation is of critical importance for the light-controlled reactivity of transition-metal complexes. In time-resolved optical spectroscopies, it gives rise to pronounced spectral redistributions with complex band shifts and thus to nonexponential kinetics, all of which are very difficult to quantify. Here we study the vibrational relaxation dynamics of a pentacoordinated azido-cobalt(II) complex in liquid solution following its ultrafast charge-transfer excitation in the near-ultraviolet (UV). The complex is photochemically remarkably stable and returns within the experimental time resolution back to its quartet electronic ground state via internal conversion. The nonadiabatic transition effectively instantaneously converts the entire photon energy into kinetic energy of the vibrational degrees of freedom. The ensuing relaxation dynamics of the vibrationally highly excited complex are monitored as a function of time using femtosecond mid-infrared (MIR) spectroscopy in the antisymmetric stretching region of the azido ligand and occur on a time scale of a few tens of picoseconds. The dynamic evolution of the MIR spectrum due to vibrational cooling of the complex can be understood quantitatively within the framework of an anharmonic coupling model, which relies on an ab initio intramolecular cubic/quartic force field from density functional theory combined with second-order vibrational perturbation theory. The simulations suggest that the primary internal conversion preferentially dumps the excess energy into the low-frequency bending modes of the azido ligand, whereas its high-frequency stretching modes are barely affected by the initial nonadiabatic transition. Surprisingly, the two bending vibrations appear to relax independently of one another, each with its own characteristic cooling time.

7.
Nanotechnology ; 31(9): 095701, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31703211

RESUMO

Zinc oxide (ZnO) hollow spheres with defined morphology and micro-/nanostructure are prepared by a hydrothermal synthesis approach. The materials possess fine-leaved structures at their particle surface (nanowall hollow micro spheres). Morphology control is achieved by citric acid used as an additive in variable relative quantities during the synthesis. The structure formation is studied by various time-dependent ex situ methods, such as scanning electron microscopy, x-ray diffraction, and Raman spectroscopy. The fine-leaved surface structure is characterized by high-resolution transmission electron microscopy techniques (HRTEM, STEM), using a high-angle annular dark field detector, as well as by differential phase contrast analysis. In-depth structural characterization of the nanowalls by drop-by-drop ex situ FE-SEM analysis provides insight into possible structure formation mechanisms. Further investigation addresses the thermal stability of the particle morphology and the enhancement of the surface-to-volume ratio by heat treatment (examined by N2 physisorption).

8.
Nanotechnology ; 30(22): 225302, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30759427

RESUMO

Block copolymer lithography allows for the large-area patterning of surfaces with self-assembled nanoscale features. The created nanostructured polymer films can be applied as masks in common lithography processing steps, such as lift-off and etching for pattern replication and transfer. In this work, we discuss an approach to improve the pattern replication efficiency by modification of the polymer mask prior to lithographical use by means of an O2/Ar plasma treatment. We present a much better quality of pattern replication without loss of features, along with a precise tunability of feature sizes, that can be achieved by short mask treatment. We point out a correlation between nanopore position within the ordered arrays, expressed by its coordination number, the nanopore shape and the replication efficiency. Our experimental strategy to explain these correlations combines the indirect investigation of patterns replicated from the modified polymer masks and direct investigation of the mask top and bottom. Pattern replication is performed either in the form of gold nanodot arrays created via lift-off or nanopores transferred into a SiO2 substrate by reactive ion etching. The direct analysis of free polymer membranes released from the substrate reveals the nanopore shape at the mask top and bottom surfaces.

9.
Phys Chem Chem Phys ; 21(43): 23803-23807, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31661103

RESUMO

Step-scan Fourier-transform infrared spectroscopy was used to monitor the photochemical reactions following the 266 nm-photolysis of aqueous ferrioxalate solutions on microsecond-to-millisecond time scales. Together with most recent observations from ultrafast infrared spectroscopy the reported results finally disclose the full molecular-level mechanism of a photochemical system that is widely known as the Hatchard-Parker actinometer.

10.
Langmuir ; 34(14): 4264-4270, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29578714

RESUMO

Site-specific formation of nanoscaled protein structures is a challenging task. Most known structuring methods are either complex and hardly upscalable or do not apply to biological matter at all. The presented combination of enzyme mediated autodeposition and nanosphere lithography provides an easy-to-apply approach for the buildup of protein nanostructures over a large scale. The key factor is the tethering of enzyme to the support in designated areas. Those areas are provided via prepatterning of enzymatically active antidots with variable diameters. Enzymatically triggered protein addressing occurs exclusively at the intended areas and continues until the entire active area is coated. After this, the reaction self-terminates. The major advantage of the presented method lies in its easy applicability and upscalability. Large-area structuring of entire support surfaces with features on the nanometer scale is performed efficiently and without the necessity of harsh conditions. These are valuable premises for large-scale applications with potentials in biosensor technology, nanoelectronics, and life sciences.


Assuntos
Nanoestruturas , Nanosferas , Impressão , Proteínas
11.
Langmuir ; 34(49): 14757-14765, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29754490

RESUMO

DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO2 areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg2+ and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO2 surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.


Assuntos
DNA/química , Nanoestruturas/química , Adsorção , Ouro/química , Nanoporos , Conformação de Ácido Nucleico , Dióxido de Silício/química
12.
Phys Chem Chem Phys ; 20(33): 21390-21403, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30105333

RESUMO

Chemical actinometry is an indispensable analytical tool in preparative photochemistry that allows for a precise measurement of radiant fluxes inside photoreactors. An actinometer thus enables an absolute determination of the quantum yield of a photochemical reaction of interest. The "gold standard" of chemical actinometry in liquid systems is the Hatchard-Parker actinometer, i.e. an aqueous solution of potassium trisoxalatoferrate(iii), which is based on the light-induced net transformation of ferric into ferrous oxalate complexes. Although the absolute photochemical quantum yield for this fundamental standard system has been accurately known for many years, the underlying molecular-level mechanisms and time scales associated with a photoreduction of the ferrioxalate actinometer remained so far largely obscured. Here, we use femtosecond mid-infrared spectroscopy combined with ultrafast laser photolysis to obtain unique structural-dynamical information associated with the primary light-triggered processes thereby finally providing the missing quantitative molecular-level foundations that ultimately justify a utilization of aqueous ferrioxalate as a true photochemical standard. Following photon absorption by the octahedral parent complex, an ultrafast decarboxylation occurs within 500 fs, which generates a penta-coordinated ferrous dioxalate that carries a bent carbon dioxide radical anion ligand in an "end-on" O-coordinated fashion. This unique intermediate structurally isomerizes on a tens of picoseconds time scale and subsequently loses a CO2˙--ligand to form a square-planar bisoxalatoferrate(ii) on a hundreds of picoseconds time scale.

13.
Angew Chem Int Ed Engl ; 57(18): 5000-5005, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29508915

RESUMO

The activation of carbon dioxide by transition metals is widely recognized as a key step for utilizing this greenhouse gas as a renewable feedstock for the sustainable production of fine chemicals. However, the dynamics of CO2 binding and unbinding to and from the ligand sphere of a metal have never been observed in the time domain. The ferrioxalate anion is used in aqueous solution as a unique model system for these dynamics and femtosecond UV-pump mid-infrared-probe spectroscopy is applied to explore its photoinduced primary processes in a time-resolved fashion. Following optical excitation, a neutral CO2 molecule is expelled from the complex within about 500 fs to generate a highly intriguing pentacoordinate ferrous dioxalate that carries a bent carbon dioxide radical anion ligand, that is, a reductively activated form of CO2 , which is end-on-coordinated to the metal center by one of its two oxygen atoms.

14.
Opt Express ; 25(19): 22608-22619, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041568

RESUMO

Switchable two dimensional liquid crystal diffraction gratings are promising candidates in beam steering devices, multiplexers and holographic displays. For these areas of applications a high degree of integration in optical systems is much sought-after. In the context of diffraction gratings this means that the angle of diffraction should be rather high, which typically poses a problem as the fabrication of small grating periods is challenging. In this paper, we propose the use of nanosphere lithography (NSL) for the fabrication of two-dimensionally structured electrodes with a periodicity of a few micrometers. NSL is based on the self-assembly of micro- or nanometer sized spheres into monolayers. It allows for easy substrate structuring on wafer scale. The manufactured electrode is combined with a liquid crystalline polymer-stabilized blue phase, which facilitates sub-millisecond electrical switching of the diffraction efficiency at a diffraction angle of 21.4°.

15.
J Phys Chem A ; 121(26): 4914-4922, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28625052

RESUMO

Femtosecond UV-pump/mid-infrared-probe spectroscopy was used to explore in detail the primary photochemical events of the free radical initiator, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, in liquid dichloromethane solution at room temperature. Following electronic excitation of its lowest excited singlet state, S1, the radical initiator undergoes an intersystem crossing to the triplet ground state, T1, with a time constant of 135 ps. A subsequent α-cleavage occurs from the triplet state with a time constant of 15 ps and yields a trimethylbenzoyl radical together with a diphenylphosphinoyl radical. Transient absorptions from the S1 and T1 states are observed that can be assigned to the P═O stretching mode and the symmetric in-plane deformation mode of the trimethylphenyl moiety of the radical initiator.

16.
Angew Chem Int Ed Engl ; 56(24): 6901-6905, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28471084

RESUMO

The eminent role of metallacyclobutadienes as catalytic intermediates in organic synthesis and polymer chemistry is widely acknowledged. In contrast, their photochemistry is as yet entirely unexplored. Herein, the photo-induced primary processes of a ferracyclobutadiene tricarbonyl complex in solution are revealed by femtosecond mid-infrared spectroscopy. The time-resolved vibrational spectra expose an ultrafast substitution of a basal CO ligand by a solvent molecule in a consecutive dissociation-association mechanism. Following optical excitation, the system relaxes non-radiatively to the triplet ground state from which a CO is expelled. Since the triplet state is bound with respect to Fe-CO cleavage, the dissociation can only occur from vibrationally excited states. The excitation energy, vibrational relaxation, and intersystem crossing to the singlet ground state control the primary quantum yield for formation of the ferracyclic dicarbonyl-solvent product complex.

17.
Chemphyschem ; 16(11): 2289-93, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26097152

RESUMO

Species containing iron at an oxidation state higher than +III are often termed "high-valent iron" and are considered to be key catalytic intermediates in biochemistry. Here, we report the direct time-domain probing of the photochemical formation of an octahedral nitrido iron(V) complex through dinitrogen cleavage from an diazido iron(III) precursor by using femtosecond mid-infrared (MIR) spectroscopy. From the time-resolved vibrational spectra, a mechanism is suggested for the photooxidation of the metal within 10 ps. This mechanism involves an initial ultrafast non-adiabatic transition, followed by a quasithermal N-N bond rupture on the ground-state surface.

18.
Phys Chem Chem Phys ; 17(20): 13659-71, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25941968

RESUMO

Femtosecond spectroscopy with hyperspectral white-light detection was used to elucidate the ultrafast primary processes of the thermodynamically stable organic radical, 1,3,5-triphenylverdazyl, in liquid acetonitrile solution at room temperature. The radical was excited with optical pulses having a duration of 39 fs and a center wavelength of 800 nm thereby accessing its energetically lowest electronically excited state (D1). The apparent spectrotemporal response is understood in terms of an ultrafast primary D1-to-D0 internal conversion that generates the electronic ground state of the radical in a highly vibrationally excited fashion within a few hundred femtoseconds. The replenished electronic ground state subsequently undergoes vibrational cooling on a time scale of a few picoseconds. The instantaneous absorption spectra of the radical derived from the femtosecond pump-probe data are analyzed within the Sulzer-Wieland formalism for calculating the electronic spectra of "hot" polyatomic molecules. The pump-probe spectra together with transient anisotropy data in the region of the D0 → D1 ground-state bleach gives evidence for an additional transient absorption that arises from a dark excited state, which gains oscillator strength with increasing vibrational excitation of the radical by virtue of vibronic coupling.

19.
Phys Chem Chem Phys ; 17(44): 29776-85, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26486475

RESUMO

Femtosecond two-dimensional infrared (2DIR) spectroscopy was carried out to study the dynamics of vibrational spectral diffusion of the nitrile stretching vibration of thiocyanate anions (S-C≡N(-)) dissolved in liquid-to-supercritical heavy water (D2O). The 2DIR line shapes were used to extract through a nodal slope analysis quantitative information about the correlation function for temporal fluctuations of the CN-stretching frequency. The inverse nodal slope could be fitted phenomenologically by a simple double-exponential decay whose predominant component had a time constant ranging between 300 fs and 1 ps depending on the temperature. The temperature dependence is interpreted in terms of solvent structural fluctuations that are driven by the librational motions of the D2O molecules located in the first solvation shell of the anion. Complementary molecular dynamics simulations of the SCN(-)/D2O system indicate that the breaking and making of hydrogen-bonds between the terminal N-atom of the anion and the D2O molecules are induced by the same solvent-shell librational degrees of freedom that drive the vibrational line broadening dynamics seen in the 2DIR experiment.

20.
Angew Chem Int Ed Engl ; 52(9): 2602-5, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23418016

RESUMO

Back and forth: Femtosecond two-dimensional infrared exchange spectroscopy was used to study the dynamics of the reversal of an intramolecular hydrogen bond. The H-bond reversal resembles a flip-flop motion that is facilitated by two concerted disrotatory torsional isomerizations and that occurs on a time scale of about 2 ps.


Assuntos
Ligação de Hidrogênio , Espectrofotometria Infravermelho/métodos , Cinética , Modelos Moleculares , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA