Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(2): 878-885, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28033014

RESUMO

Transitional metal ditelluride WTe2 has been extensively studied owing to its intriguing physical properties like nonsaturating positive magnetoresistance and being possibly a type-II Weyl semimetal. While surging research activities were devoted to the understanding of its bulk properties, it remains a substantial challenge to explore the pristine physics in atomically thin WTe2. Here, we report a successful synthesis of mono- to few-layer WTe2 via chemical vapor deposition. Using atomically thin WTe2 nanosheets, we discover a previously inaccessible ambipolar behavior that enables the tunability of magnetoconductance of few-layer WTe2 from weak antilocalization to weak localization, revealing a strong electrical field modulation of the spin-orbit interaction under perpendicular magnetic field. These appealing physical properties unveiled in this study clearly identify WTe2 as a promising platform for exotic electronic and spintronic device applications.

2.
Front Physiol ; 13: 1040777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388128

RESUMO

Digital holography is an effective technology in image reconstruction as amplitude and phase information of cells can be acquired without any staining. In this paper, we propose a holographic technique with an improved Gerchberg-Saxton (GS) algorithm to reconstruct cell imaging based on phase reconstruction information. Comparative experiments are conducted on four specific models to investigate the effectiveness of the proposed method. The morphological parameters (such as shape, volume, and sphericity) of abnormal erythrocytes can be obtained by reconstructing cell hologram of urinary sediment. Notably, abnormal red blood cells can also be detected in mussy circumstances by the proposed method, owing to the significantly biophysical contrast (refractive index distribution and mass density) between two different cells. Therefore, this proposed method has a broad application prospect in cell image reconstruction and cell dynamic detection.

3.
Nat Commun ; 12(1): 3089, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035304

RESUMO

Photochromic probes with reversible fluorescence have revolutionized the fields of single molecule spectroscopy and super-resolution microscopy, but lack sufficient chemical specificity. In contrast, Raman probes with stimulated Raman scattering (SRS) microscopy provides superb chemical resolution for super-multiplexed imaging, but are relatively inert. Here we report vibrational photochromism by engineering alkyne tagged diarylethene to realize photo-switchable SRS imaging. The narrow Raman peak of the alkyne group shifts reversibly upon photoisomerization of the conjugated diarylethene when irradiated by ultraviolet (UV) or visible light, yielding "on" or "off" SRS images taken at the photoactive Raman frequency. We demonstrated photo-rewritable patterning and encryption on thin films, painting/erasing of cells with labelled alkyne-diarylethene, as well as pulse-chase experiments of mitochondria diffusion in living cells. The design principle provides potentials for super-resolution microscopy, optical memories and switches with vibrational specificity.

4.
Nat Commun ; 11(1): 2451, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415119

RESUMO

Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. Here, we report on terahertz-field driven high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2 at room temperature. Excited by linearly-polarized multi-cycle terahertz pulses, the third-, fifth-, and seventh-order harmonic generation is very efficient and detected via time-resolved spectroscopic techniques. The observed harmonic radiation is further studied as a function of pump-pulse fluence. Their fluence dependence is found to deviate evidently from the expected power-law dependence in the perturbative regime. The observed highly non-perturbative behavior is reproduced based on our analysis of the intraband kinetics of the terahertz-field driven nonequilibrium state using the Boltzmann transport theory. Our results indicate that the driven nonlinear kinetics of the Dirac electrons plays the central role for the observed highly nonlinear response.

5.
ACS Nano ; 13(12): 14033-14040, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31725258

RESUMO

Hexagonal boron nitride (h-BN) is an important member of two-dimensional (2D) materials with a large direct bandgap, and has attracted growing interest in ultraviolet optoelectronics and nanoelectronics. Compared with graphene and graphite, h-BN has weak Raman effect because of the far off-resonance excitation; hence, it is difficult to exploit Raman spectroscopy to characterize important properties of 2D h-BN, such as thickness, doping, and strain effects. Here, we applied stimulated Raman scattering (SRS) to enhance the sensitivity of the E2g Raman mode of h-BN. We showed that SRS microscopy achieves rapid high resolution imaging of h-BN with a pixel dwell time 4 orders of magnitude smaller than conventional spontaneous Raman microscopy. Moreover, the near-perfect linear dependence of signal intensity on h-BN thickness and isotropic polarization dependence allow convenient determination of the flake thickness with SRS imaging. Our results indicated that SRS microscopy provides a promising tool for high-speed quantification of h-BN and holds the potential for vibrational imaging of 2D materials.

6.
ACS Nano ; 12(7): 7185-7196, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29901987

RESUMO

The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe2, in a van der Waals hybrid structure obtained by mechanically transferring NbSe2 onto various thicknesses of WTe2. When the WTe2 thickness ( tWTe2) reaches 21 nm, the superconducting transition occurs around the critical temperature ( Tc) of NbSe2 with a gap amplitude (Δp) of 0.38 meV and an unexpected ultralong proximity length ( lp) up to 7 µm. With the thicker 42 nm WTe2 layer, however, the proximity effect yields Tc ≈ 1.2 K, Δp = 0.07 meV, and a short lp of less than 1 µm. Our theoretical calculations, based on the Bogoliubov-de Gennes equations in the clean limit, predict that the induced superconducting gap is a sizable fraction of the NbSe2 superconducting one when tWTe2 is less than 30 nm and then decreases quickly as tWTe2 increases. This agrees qualitatively well with the experiments. Such observations form a basis in the search for superconducting phases in topological semimetals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA