Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 120968, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703643

RESUMO

Planning under complex uncertainty often asks for plans that can adapt to changing future conditions. To inform plan development during this process, exploration methods have been used to explore the performance of candidate policies given uncertainties. Nevertheless, these methods hardly enable adaptation by themselves, so extra efforts are required to develop the final adaptive plans, hence compromising the overall decision-making efficiency. This paper introduces Reinforcement Learning (RL) that employs closed-loop control as a new exploration method that enables automated adaptive policy-making for planning under uncertainty. To investigate its performance, we compare RL with a widely-used exploration method, Multi-Objective Evolutionary Algorithm (MOEA), in two hypothetical problems via computational experiments. Our results indicate the complementarity of the two methods. RL makes better use of its exploration history, hence always providing higher efficiency and providing better policy robustness in the presence of parameter uncertainty. MOEA quantifies objective uncertainty in a more intuitive way, hence providing better robustness to objective uncertainty. These findings will help researchers choose appropriate methods in different applications.


Assuntos
Algoritmos , Tomada de Decisões , Incerteza , Reforço Psicológico
2.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365954

RESUMO

Farm livestock identification and welfare assessment using non-invasive digital technology have gained interest in agriculture in the last decade, especially for accurate traceability. This study aimed to develop a face recognition system for dairy farm cows using advanced deep-learning models and computer vision techniques. This approach is non-invasive and potentially applicable to other farm animals of importance for identification and welfare assessment. The video analysis pipeline follows standard human face recognition systems made of four significant steps: (i) face detection, (ii) face cropping, (iii) face encoding, and (iv) face lookup. Three deep learning (DL) models were used within the analysis pipeline: (i) face detector, (ii) landmark predictor, and (iii) face encoder. All DL models were finetuned through transfer learning on a dairy cow dataset collected from a robotic dairy farm located in the Dookie campus at The University of Melbourne, Australia. Results showed that the accuracy across videos from 89 different dairy cows achieved an overall accuracy of 84%. The computer program developed may be deployed on edge devices, and it was tested on NVIDIA Jetson Nano board with a camera stream. Furthermore, it could be integrated into welfare assessment previously developed by our research group.


Assuntos
Indústria de Laticínios , Aprendizado Profundo , Bovinos , Animais , Feminino , Humanos , Indústria de Laticínios/métodos , Gado , Fazendas , Agricultura
3.
Sensors (Basel) ; 21(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696059

RESUMO

New and emerging technologies, especially those based on non-invasive video and thermal infrared cameras, can be readily tested on robotic milking facilities. In this research, implemented non-invasive computer vision methods to estimate cow's heart rate, respiration rate, and abrupt movements captured using RGB cameras and machine learning modelling to predict eye temperature, milk production and quality are presented. RGB and infrared thermal videos (IRTV) were acquired from cows using a robotic milking facility. Results from 102 different cows with replicates (n = 150) showed that an artificial neural network (ANN) model using only inputs from RGB cameras presented high accuracy (R = 0.96) in predicting eye temperature (°C), using IRTV as ground truth, daily milk productivity (kg-milk-day-1), cow milk productivity (kg-milk-cow-1), milk fat (%) and milk protein (%) with no signs of overfitting. The ANN model developed was deployed using an independent 132 cow samples obtained on different days, which also rendered high accuracy and was similar to the model development (R = 0.93). This model can be easily applied using affordable RGB camera systems to obtain all the proposed targets, including eye temperature, which can also be used to model animal welfare and biotic/abiotic stress. Furthermore, these models can be readily deployed in conventional dairy farms.


Assuntos
Indústria de Laticínios , Lactação , Animais , Inteligência Artificial , Bovinos , Feminino , Leite , Tecnologia de Sensoriamento Remoto
4.
Sensors (Basel) ; 20(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911709

RESUMO

Bushfires are increasing in number and intensity due to climate change. A newly developed low-cost electronic nose (e-nose) was tested on wines made from grapevines exposed to smoke in field trials. E-nose readings were obtained from wines from five experimental treatments: (i) low-density smoke exposure (LS), (ii) high-density smoke exposure (HS), (iii) high-density smoke exposure with in-canopy misting (HSM), and two controls: (iv) control (C; no smoke treatment) and (v) control with in-canopy misting (CM; no smoke treatment). These e-nose readings were used as inputs for machine learning algorithms to obtain a classification model, with treatments as targets and seven neurons, with 97% accuracy in the classification of 300 samples into treatments as targets (Model 1). Models 2 to 4 used 10 neurons, with 20 glycoconjugates and 10 volatile phenols as targets, measured: in berries one hour after smoke (Model 2; R = 0.98; R2 = 0.95; b = 0.97); in berries at harvest (Model 3; R = 0.99; R2 = 0.97; b = 0.96); in wines (Model 4; R = 0.99; R2 = 0.98; b = 0.98). Model 5 was based on the intensity of 12 wine descriptors determined via a consumer sensory test (Model 5; R = 0.98; R2 = 0.96; b = 0.97). These models could be used by winemakers to assess near real-time smoke contamination levels and to implement amelioration strategies to minimize smoke taint in wines following bushfires.


Assuntos
Nariz Eletrônico , Vitis , Vinho , Inteligência Artificial , Frutas/química , Fumaça/análise , Vinho/análise
5.
Front Artif Intell ; 4: 717003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761213

RESUMO

We investigate the application of state-of-the-art goal recognition techniques for behaviour recognition over complex continuous domains using model predictive control (MPC) for trajectory generation. We formally define the problem of kinodynamic behaviour recognition and establish a set of baseline behaviours and performance measures in the complex domain of unmanned aerial maneuvers. We evaluate how well our approach performs over a range of standard aerial maneuvers and representative initial configurations of varying complexity. The work also highlights future research directions in compound model-based behaviour recognition and team behaviour recognition where multiple agents may be acting simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA