RESUMO
Autonomously replicating vectors represent a simple and versatile model system for genetic modifications, but their localization in the nucleus and effect on endogenous gene expression is largely unknown. Using circular chromosome conformation capture we mapped genomic contact sites of S/MAR-based replicons in HeLa cells. The influence of cis-active sequences on genomic localization was assessed using replicons containing either an insulator sequence or an intron. While the original and the insulator-containing replicons displayed distinct contact sites, the intron-containing replicon showed a rather broad genomic contact pattern. Our results indicate a preference for certain chromatin structures and a rather non-dynamic behaviour during mitosis. Independent of inserted cis-active elements established vector molecules reside preferentially within actively transcribed regions, especially within promoter sequences and transcription start sites. However, transcriptome analyses revealed that established S/MAR-based replicons do not alter gene expression profiles of host genome. Knowledge of preferred contact sites of exogenous DNA, e.g. viral or non-viral episomes, contribute to our understanding of episome behaviour in the nucleus and can be used for vector improvement and guiding of DNA sequences to specific subnuclear sites.
Assuntos
Replicon , Sítios de Ligação/genética , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Genoma Humano , Células HeLa , Humanos , Modelos Genéticos , Plasmídeos/genética , Plasmídeos/metabolismo , Origem de ReplicaçãoRESUMO
'If G-quadruplexes form so readily in vitro, Nature will have found a way of using them in vivo' (Statement by Aaron Klug over 30 years ago).During the last decade, four-stranded helical structures called G-quadruplex (or G4) have emerged from being a structural curiosity observed in vitro, to being recognized as a possible nucleic acid based mechanism for regulating multiple biological processes in vivo. The sequencing of many genomes has revealed that they are rich in sequence motifs that have the potential to form G-quadruplexes and that their location is non-random, correlating with functionally important genomic regions. In this short review, we summarize recent evidence for the in vivo presence and function of DNA and RNA G-quadruplexes in various cellular pathways including DNA replication, gene expression and telomere maintenance. We also highlight remaining open questions that will have to be addressed in the future.
Assuntos
Quadruplex G , DNA/química , DNA/fisiologia , Replicação do DNA , Genoma Humano , Instabilidade Genômica , Humanos , Biossíntese de Proteínas , RNA/química , RNA/fisiologia , Telômero/química , Transcrição GênicaRESUMO
De novo addition of telomeric sequences can occur at broken chromosomes and must be well controlled, which is essential during programmed DNA reorganization processes. In ciliated protozoa an extreme form of DNA-reorganization is observed during macronuclear differentiation after sexual reproduction leading to the elimination of specific parts of the germline genome. Regulating these processes involves small noncoding RNAs, but in addition DNA-reordering, excision and amplification require RNA templates deriving from the parental macronucleus. We show that these putative RNA templates can carry telomeric repeats. Microinjection of RNA templates carrying modified telomeres into the developing macronucleus leads to modified telomeres in vegetative cells, providing strong evidence, that de novo addition of telomeres depends on a telomere-containing transcript from the parental macronucleus.
Assuntos
Replicação do DNA , RNA/genética , Telômero/genética , Moldes Genéticos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cilióforos/genética , Cilióforos/metabolismo , Amplificação de Genes , Variação Genética , Modelos Biológicos , RNA de Cadeia Dupla/genética , RNA não Traduzido/genética , Telômero/metabolismoRESUMO
Insertional oncogene activation and aberrant splicing have proved to be major setbacks for retroviral stem cell gene therapy. Integrase-deficient human immunodeficiency virus-1-derived vectors provide a potentially safer approach, but their circular genomes are rapidly lost during cell division. Here we describe a novel lentiviral vector (LV) that incorporates human ß-interferon scaffold/matrix-associated region sequences to provide an origin of replication for long-term mitotic maintenance of the episomal LTR circles. The resulting 'anchoring' non-integrating lentiviral vector (aniLV) achieved initial transduction rates comparable with integrating vector followed by progressive establishment of long-term episomal expression in a subset of cells. Analysis of aniLV-transduced single cell-derived clones maintained without selective pressure for >100 rounds of cell division showed sustained transgene expression from episomes and provided molecular evidence for long-term episome maintenance. To evaluate aniLV performance in primary cells, we transduced lineage-depleted murine hematopoietic progenitor cells, observing GFP expression in clonogenic progenitor colonies and peripheral blood leukocyte chimerism following transplantation into conditioned hosts. In aggregate, our studies suggest that scaffold/matrix-associated region elements can serve as molecular anchors for non-integrating lentivector episomes, providing sustained gene expression through successive rounds of cell division and progenitor differentiation in vitro and in vivo.
Assuntos
Vetores Genéticos , Lentivirus/genética , Regiões de Interação com a Matriz , Mitose/genética , Plasmídeos/genética , Animais , Linhagem Celular , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferon beta/genética , Camundongos , Transdução Genética , TransgenesRESUMO
We exploit the unusual genome organization of the ciliate cell to analyze the control of specific gene amplification during a nuclear differentiation process. Ciliates contain two types of nuclei within one cell, the macronucleus and the micronucleus; and after sexual reproduction a new macronucleus is formed from a micronuclear derivative. During macronuclear differentiation, most extensive DNA reorganization, elimination, and fragmentation processes occur, resulting in a macronucleus containing short DNA molecules (nanochromosomes) representing individual genetic units and each being present in high copy number. It is believed that these processes are controlled by small nuclear RNAs but also by a template derived from the old macronucleus. We first describe the exact copy numbers of selected nanochromosomes in the macronucleus, and define the timing during nuclear differentiation at which copy number is determined. This led to the suggestion that DNA processing and copy number control may be closely related mechanisms. Degradation of an RNA template derived from the macronucleus leads to significant decrease in copy number, whereas injection of additional template molecules results in an increase in copy number and enhanced expression of the corresponding gene. These observations can be incorporated into a mechanistic model about an RNA-dependent epigenetic regulation of gene copy number during nuclear differentiation. This highlights that RNA, in addition to its well-known biological functions, can also be involved in the control of gene amplification.
Assuntos
Cilióforos/genética , DNA de Protozoário/metabolismo , Amplificação de Genes/fisiologia , Genes de Protozoários/fisiologia , Macronúcleo/metabolismo , Micronúcleo Germinativo/metabolismo , RNA de Protozoário/metabolismo , RNA Nuclear Pequeno/metabolismo , Animais , Cromossomos/genética , Cromossomos/metabolismo , Cilióforos/metabolismo , DNA de Protozoário/genética , Epigênese Genética/fisiologia , Dosagem de Genes/fisiologia , Macronúcleo/genética , Micronúcleo Germinativo/genética , Modelos Genéticos , RNA de Protozoário/genética , RNA Nuclear Pequeno/genéticaRESUMO
BACKGROUND: The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. RESULTS: In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes.Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa). H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals.We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA) confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are conserved even in putatively early branching eukaryotic taxa (Euglenozoa/Excavata). CONCLUSIONS: At least a basal repertoire of chromatin modifying mechanisms appears to share old common ancestry and may thus be inherent to all eukaryotes. We speculate that epigenetic principles responsive to environmental triggers may have had influenced phenotypic variation and concomitantly may potentially have had impact on eukaryotic diversification.
Assuntos
Cromatina/metabolismo , Evolução Molecular , Histonas/metabolismo , Animais , Cromatina/genética , Epigênese Genética/genética , Histonas/genética , Humanos , Filogenia , Processamento de Proteína Pós-Traducional/genéticaRESUMO
BACKGROUND: The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP) and directed into a 2000 bp long matrix attachment region sequence (MARS) derived from the human beta-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression. RESULTS: Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies in vitro, as well as more persistent transgene expression profiles in vivo. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P) element that is known to be less affected by epigenetic silencing events. CONCLUSIONS: The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications in vitro and for non-viral gene delivery in vivo.
Assuntos
Vetores Genéticos/biossíntese , Plasmídeos/genética , Transfecção , Transgenes , Animais , Ilhas de CpG , Citomegalovirus/genética , Expressão Gênica , Humanos , Fígado/metabolismo , Masculino , Regiões de Interação com a Matriz , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , RepliconRESUMO
BACKGROUND: Basic functions of the eukaryotic nucleus, like transcription and replication, are regulated in a hierarchic fashion. It is assumed that epigenetic factors influence the efficiency and precision of these processes. In order to uncouple local and long-range epigenetic features we used an extra-chromosomal replicon to study the requirements for replication and segregation and compared its behavior to that of its integrated counterpart. RESULTS: The autonomous replicon replicates in all eukaryotic cells and is stably maintained in the absence of selection but, as other extra-chromosomal replicons, its establishment is very inefficient. We now show that following establishment the vector is stably associated with nuclear compartments involved in gene expression and chromosomal domains that replicate at the onset of S-phase. While the vector stays autonomous, its association with these compartments ensures the efficiency of replication and mitotic segregation in proliferating cells. CONCLUSION: Using this novel minimal model system we demonstrate that relevant functions of the eukaryotic nucleus are strongly influenced by higher nuclear architecture. Furthermore our findings have relevance for the rational design of episomal vectors to be used for genetic modification of cells: in order to improve such constructs with respect to efficiency elements have to be identified which ensure that such constructs reach regions of the nucleus favorable for replication and transcription.
Assuntos
Replicação do DNA/genética , DNA/genética , Mitose , Replicon/genética , Animais , Células CHO , Núcleo Celular/genética , Imunoprecipitação da Cromatina , Cromossomos de Mamíferos/genética , Cricetinae , Cricetulus , Plasmídeos/genéticaRESUMO
Adeno-associated virus (AAV) vectors are one of the most frequently applied gene transfer systems in research and human clinical trials. Since AAV vectors do not possess an integrase activity, application is restricted to terminally differentiated tissues if transgene expression is required long term. To overcome this limitation and to generate AAV vectors that persist episomally in dividing cells, AAV vector genomes were equipped with a scaffold/matrix attachment region (S/MAR). After a mild antibiotic selection, cells transduced with AAV-S/MAR established colonies that maintained long-term transgene expression (>50 population doublings) from replicating AAV vector episomes in the absence of further selection. Unexpectedly, with a lesser but still significant efficiency, the control vector (AAV-ΔS/MAR), a standard single-stranded AAV vector, also established stable transgene-expressing colonies, most of which were maintained as replicating episomes rather than integrated vector genomes. Thus, based on the result in HeLa cells, it is concluded that AAV vector genomes per se possess the ability to establish episomal maintenance in proliferating cells, a feature that can be enhanced by incorporation of a foreign genomic element such as an S/MAR element.
Assuntos
Dependovirus , Vetores Genéticos , Genoma Viral , Regiões de Interação com a Matriz , Plasmídeos , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Plasmídeos/genética , Plasmídeos/metabolismoRESUMO
In the course of macronuclear differentiation in spirotrichous ciliates massive DNA reorganization processes take place, which include splicing, cutting, rearranging and eliminating specific DNA sequences. In order to identify genes involved in these processes we took advantage of suppression subtractive hybridization. We have identified three transcripts that are exclusively expressed during macronuclear development in the ciliate Stylonychia lemnae. Two of the three differentially expressed mRNAs we have analyzed encode for novel proteins. One gene, mdp1 [macronuclear development protein 1 (MDP1)], encodes a homolog of the PIWI protein family. PIWI proteins are involved in germline differentiation processes and RNA silencing in worms, flies, mice, humans and in plants. Possible functions of the S.lemnae PIWI related protein MDP1 in the regulation of macronuclear development will be discussed.
Assuntos
Núcleo Celular/genética , Cilióforos/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular , Núcleo Celular/ultraestrutura , Cilióforos/metabolismo , Cilióforos/ultraestrutura , Genes de Protozoários , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , RNA de Protozoário/biossíntese , Homologia de Sequência de AminoácidosRESUMO
Dramatic DNA reorganization and elimination processes occur during macronuclear differentiation in ciliates. In this study we analyzed whether cytosine methylation of specific sequences plays a functional role during DNA rearrangement. Three classes of sequences, macronuclear-destined sequences (MDSs, pCE7), members from a large family of transposon-like elements and micronuclear-specific sequences (pLJ01), differing in their structure and future destiny during nuclear differentiation, were studied in the micronucleus, the developing macronucleus and, when present, in the mature macronucleus. While the MDSs become processed to a 1.1 and 1.3 kb gene-sized macronuclear DNA molecule, the family of transposon-like elements represented by MaA81 becomes removed late in the course of polytene chromosome formation. The micronuclear-specific sequence pLJ01 is eliminated together with bulk micronuclear DNA during degradation of polytene chromosomes. No methylated cytosine could be detected in the vegetative macronucleus and no difference in methylation pattern was observed either between micronucleus and developing macronucleus in MDSs or in a micronuclear-specific sequence. However, a significant percentage of the cytosines contained in the transposon-like element becomes methylated de novo in the course of macronuclear differentiation. This is the first demonstration that cytosine methylation in specific sequences occurs during macronuclear differentiation and may provide a first step towards understanding epigenetic factors involved in DNA processing.
Assuntos
Núcleo Celular/genética , Citosina/metabolismo , Metilação de DNA , Hypotrichida/genética , Animais , Núcleo Celular/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , DNA de Protozoário/genética , Hypotrichida/crescimento & desenvolvimento , Hypotrichida/metabolismo , Reação em Cadeia da PolimeraseRESUMO
After sexual reproduction in ciliated protozoa a new macronucleus differentiates from a micronuclear derivative. In the course of macronuclear development dramatic DNA- and chromatin reorganisation processes occur, which include splicing of DNA sequences such as IES (internal eliminated sequences) and transposon-like elements during formation of polytene chromosomes, degradation of the polytene chromosomes and specific elimination of micronuclear-specific DNA, de novo addition of telomeres and specific amplification of DNA sequences. In order to understand the molecular basis of this nuclear differentiation process, analysis of developmentally regulated genes seems to be a necessary prerequisite. We performed a microarray analysis to identify genes differentially expressed during macronuclear differentiation. 467 sequences from cDNA libraries were identified as possible candidates from which 384 sequences were further characterised by sequence analysis. These sequences were identified, if possible, by DNA and protein BLAST analysis. Expression of one of these sequences was silenced by RNAi and a preliminary functional analysis performed. Results presented in this study provide the basis for a functional characterisation of genes differentially expressed during this nuclear differentiation process.
Assuntos
Núcleo Celular/fisiologia , Cilióforos/genética , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Cilióforos/crescimento & desenvolvimento , DNA Complementar/química , DNA Complementar/genética , DNA de Protozoário/análise , DNA de Protozoário/genética , Perfilação da Expressão Gênica , Genes de Protozoários/genética , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Interferência de RNA , RNA de Protozoário/análise , RNA de Protozoário/genética , Análise de Sequência de DNARESUMO
BACKGROUND: Regulation of chromatin structure involves deposition of selective histone variants into nucleosome arrays. Numerous histone H3 variants become differentially expressed by individual nanochromosomes in the course of macronuclear differentiation in the spirotrichous ciliate Stylonychia lemnae. Their biological relevance remains to be elucidated. RESULTS: We show that the differential assembly of H3 variants into chromatin is strongly correlated with the functional separation of chromatin structures in developing macronuclei during sexual reproduction in Stylonychia, thus probably determining the fate of specific sequences. Specific H3 variants approximately 15 kDa or 20 kDa in length are selectively targeted by post-translational modifications. We found that only the 15 kDa H3 variants including H3.3 and H3.5, accumulate in the early developing macronucleus, and these also occur in mature macronuclei. H3.7 is a 20 kDa variant that specifically becomes enriched in macronuclear anlagen during chromosome polytenization. H3.7, acetylated at lysine-32 (probably equivalent to lysine-36 of most H3 variants), is specifically associated with a sequence class that is retained in the mature macronucleus and therefore does not undergo developmental DNA elimination. H3.8 is another 20 kDa variant that is restricted to the micronucleus. H3.8 is selectively targeted by lysine methylation and by serine or threonine phosphorylation. Intriguingly, the expression and chromatin localization of the histone variant H3.3 was impaired during macronuclear differentiation after RNA interference knock-down of Piwi expression. CONCLUSIONS: Differential deposition of H3 variants into chromatin strongly correlates with the functional distinction of genomic sequence classes on the chromatin level, thus helping to determine the fate of specific DNA sequences during sexual reproduction in Stylonychia. Consequently, H3 variants are selectively targeted by post-translational modifications, possibly as a result of deviations within the recognition motifs, which allow binding of effector proteins. We propose that differential assembly of histone variants into chromatin of various nuclear types could contribute to nuclear identity, for example, during differential development of either new micronuclei or a macronuclear anlage from mitosis products of the zygote nucleus (synkaryon). The observation that the Piwi-non-coding RNA (ncRNA) pathway influences the expression and deposition of H3.3 in macronuclear anlagen indicates for the first time that selective histone variant assembly into chromatin might possibly depend on ncRNA.
RESUMO
The vector pEPI was the first nonviral and episomally replicating vector. Its functional element is an expression unit linked to a chromosomal scaffold/matrix attached region (S/MAR). The vector replicates autonomously with low copy number in various cell lines, is mitotically stable in the absence of selection over hundreds of generations, and was successfully used for the efficient generation of genetically modified pigs. Since it is assumed that establishment of the vector is a stochastic event and strongly depends on the nuclear compartment it reaches after transfection, it is of great interest to identify genomic sequences that guide DNA sequences into certain nuclear compartments. Here we inserted genomic cis-acting sequences into pEPI and examined their impact on transgene expression, long-term stability, and vector establishment. We demonstrated that a ubiquitous chromatin-opening element (UCOE) mediated enhanced transgene expression, while an insulator sequence (cHS4) increased establishment efficiency, presumably via an additional interaction with the nuclear matrix. Thus, besides being a promising alternative to currently used viral vectors in gene therapeutic approaches, pEPI may also serve as a tool to study nuclear compartmentalization; identification of genomic cis-acting sequences that are involved in nuclear organization will contribute to our understanding of the interplay between transgene expression, plasmid establishment, and nuclear architecture.Molecular Therapy-Nucleic Acids (2013) 2, e118; doi:10.1038/mtna.2013.47; published online 3 September 2013.
RESUMO
We introduce ciliated protozoa, and more specifically the stichotrichous ciliates Oxytricha and Stylonychia, as biological model systems for the analysis of programmed DNA-reorganization processes during nuclear differentiation. These include DNA excision, DNA elimination, reordering of gene segments and specific gene amplification. We show that small nuclear RNAs specify DNA sequences to be excised or retained, but also discuss the need for a RNA template molecule derived from the parental nucleus for these processes. This RNA template guides reordering of gene segments to become functional genes and determines gene copy number in the differentiated nucleus. Since the template is derived from the parental macronucleus, gene reordering and DNA amplification are inherited in a non-Mendelian epigenetic manner.
Assuntos
Epigênese Genética/genética , Impressão Genômica/genética , Oxytricha/genética , RNA Nucleolar Pequeno/genética , Núcleo Celular/genética , Cilióforos/genética , Amplificação de Genes , Dosagem de Genes , Macronúcleo/genética , Modelos BiológicosRESUMO
BACKGROUND: DNA methylation and demethylation are important epigenetic regulatory mechanisms in eukaryotic cells and, so far, only partially understood. We exploit the minimalistic biological ciliate system to understand the crosstalk between DNA modification and chromatin structure. In the macronucleus of these cells, the DNA is fragmented into individual short DNA molecules, each representing a functional expression and replication unit. Therefore, long range epigenomic interaction can be excluded in this system. RESULTS: In the stichotrichous ciliate Stylonychia lemnae, cytosine methylation occurs in a small subset of macronuclear nanochromosomes expressed only during sexual reproduction. Methylation pattern shows similarity to that observed in fungi and Drosophila. Cytosine methylation correlates with gene activity and chromatin structure. Upon gene activation, cytosines become demethylated and a redistribution of histone post-translational modifications (PTMs) takes place. Evidence is presented that the formation of a permissive chromatin structure in the vicinity of the 5meCs precedes cytosine methylation and is probably a necessary prerequisite for their demethylation. Shortly after demethylation of cytosines occurs, the parental macronucleus degenerates, a new macronucleus is formed from a micronuclear derivative and the specific methylation pattern is transmitted from the germline micronucleus to the new macronucleus. CONCLUSIONS: We show that very few, or even only one, discrete methylated cytosines are required to assign regulatory functions at a specific locus. Furthermore, evidence is provided that a permissive chromatin structure is probably a necessary prerequisite for the demethylation of specific cytosines. Our results allow us to propose a mechanistic model for the biological function of cytosine methylation in the ciliate cell and its regulation during the cell cycle.
RESUMO
As with all eukaryotic replicons, the stable establishment of S/MAR (scaffold/matrix attached region) vectors is a stochastic event that depends on poorly understood epigenetic factors such as chromatin structure and nuclear localization. Establishment efficiency describes the percentage of cells in which a particular S/MAR vector is stably retained as an episome after an initial selection period. Expected establishment efficiency for S/MAR vectors is 1-5%. This article describes a colony-forming assay that may be used either to determine establishment efficiency or to generate single cell clones.
Assuntos
Ensaio de Unidades Formadoras de Colônias/métodos , Engenharia Genética/métodos , Vetores Genéticos , Plasmídeos , Transformação Genética , Animais , Células CHO , Cricetinae , Replicação do DNA , Instabilidade GenômicaRESUMO
The episomal status of S/MAR (scaffold/matrix attached region)-based vectors can be confirmed by several methods including Southern blots, fluorescence in situ hybridization (FISH) analysis, or plasmid rescue experiments. In rescue experiments, genomic DNA (gDNA) or DNA from Hirt extracts is isolated from cell clones or mixed populations in which S/MAR plasmids are stably established. Bacteria are transformed with this DNA and if episomal plasmid DNA (pDNA) is present, resistant bacterial colonies will form.
Assuntos
Engenharia Genética/métodos , Vetores Genéticos/análise , Vetores Genéticos/isolamento & purificação , Plasmídeos/análise , Plasmídeos/isolamento & purificação , Transformação Bacteriana , Transformação Genética , Escherichia coli/genéticaRESUMO
Nonviral episomal vectors represent attractive alternatives to currently used virus-based expression systems. In the late 1990s, it was shown that a plasmid containing an expression cassette linked to a scaffold/matrix attached region (S/MAR) replicates as a low copy number episome in all cell lines tested, as well as primary cells, and can be used for the genetic modification of higher animals. Once established in the cell, the S/MAR vector replicates early during S-phase and, in the absence of selection, is stably retained in the cells for an unlimited period of time. This vector can therefore be regarded as a minimal model system for studying the epigenetic regulation of replication and functional nuclear architecture. In theory, this construct represents an almost "ideal" expression system for gene therapy. In practice, S/MAR-based vectors stably modify mammalian cells with efficiencies far below those of virus-based constructs. Consequently, they have not yet found application in gene therapy trials. Furthermore, S/MAR vector systems are not trivial to handle and several critical technical issues have to be considered when modifying these vectors for various applications.
Assuntos
Engenharia Genética/métodos , Vetores Genéticos , Plasmídeos , Animais , Linhagem Celular , Replicação do DNA , Instabilidade Genômica , Humanos , MamíferosRESUMO
It is well established that G-quadruplex DNA structures form at ciliate telomeres and their formation throughout the cell-cycle by telomere-end-binding proteins (TEBPs) has been analyzed. During replication telomeric G-quadruplex structure has to be resolved to allow telomere replication by telomerase. It was shown that both phosphorylation of TEBPß and binding of telomerase are prerequisites for this process, but probably not sufficient to unfold G-quadruplex structure in timely manner to allow replication to proceed. Here we describe a RecQ-like helicase required for unfolding of G-quadruplex structures in vivo. This helicase is highly reminiscent of human RecQ protein-like 4 helicase as well as other RecQ-like helicase found in various eukaryotes and E. coli. In situ analyses combined with specific silencing of either the telomerase or the helicase by RNAi and co-immunoprecipitation experiments demonstrate that this helicase is associated with telomerase during replication and becomes recruited to telomeres by this enzyme. In vitro assays showed that a nuclear extract prepared from cells in S-phase containing both the telomerase as well as the helicase resolves telomeric G-quadruplex structure. This finding can be incorporated into a mechanistic model about the replication of telomeric G-quadruplex structures during the cell cycle.