Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Pharmacol ; 100(2): 53-60, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031187

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressure and carries a very poor prognosis. Understanding of PAH pathogenesis is needed to support the development of new therapeutic strategies. Transforming growth factor ß (TGF-ß) drives vascular remodeling and increases vascular resistance by regulating differentiation and proliferation of smooth muscle cells (SMCs). Also, sphingosine-1-phosphate (S1P) has been implicated in PAH, but the relation between these two signaling mechanisms is not well understood. Here, we characterize the signaling networks downstream of TGF-ß in human pulmonary arterial smooth muscle cells (HPASMCs), which involves mothers against decapentaplegic homolog (SMAD) signaling as well as Rho GTPases. Activation of Rho GTPases regulates myocardin-related transcription factor (MRTF) and serum response factor (SRF) transcription activity and results in upregulation of contractile gene expression. Our genetic and pharmacologic data show that in HPASMCs upregulation of α smooth muscle actin (αSMA) and calponin by TGF-ß is dependent on both SMAD and Rho/MRTF-A/SRF transcriptional mechanisms.The kinetics of TGF-ß-induced myosin light chain (MLC) 2 phosphorylation, a measure of RhoA activation, are slow, as is regulation of the Rho/MRTF/SRF-induced αSMA expression. These results suggest that TGF-ß1 activates Rho/phosphorylated MLC2 through an indirect mechanism, which was confirmed by sensitivity to cycloheximide treatment. As a potential mechanism for this indirect action, TGF-ß1 upregulates mRNA for sphingosine kinase (SphK1), the enzyme that produces S1P, an upstream Rho activator, as well as mRNA levels of the S1P receptor (S1PR) 3. SphK1 inhibitor and S1PR3 inhibitors (PF543 and TY52156/VPC23019) reduce TGF-ß1-induced αSMA upregulation. Overall, we propose a model in which TGF-ß1 activates Rho/MRTF-A/SRF by potentiating an autocrine/paracrine S1P signaling mechanism through SphK1 and S1PR3. SIGNIFICANCE STATEMENT: In human pulmonary arterial smooth muscle cells, transforming growth factor ß depends on sphingosine-1-phosphate signaling to bridge the interaction between mothers against decapentaplegic homolog and Rho/myocardin-related transcription factor (MRTF) signaling in regulating α smooth muscle actin (αSMA) expression. The Rho/MRTF pathway is a signaling node in the αSMA regulatory network and is a potential therapeutic target for the treatment of pulmonary arterial hypertension.


Assuntos
Lisofosfolipídeos/metabolismo , Artéria Pulmonar/citologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Fator de Crescimento Transformador beta1/farmacologia , Actinas/genética , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas dos Microfilamentos/genética , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Fator de Resposta Sérica/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Esfingosina/metabolismo , Calponinas
2.
Bioorg Med Chem Lett ; 27(8): 1744-1749, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28285914

RESUMO

We recently reported the development of a novel inhibitor of Rho-mediated gene transcription (1, CCG-203971) that is efficacious in multiple animal models of acute fibrosis, including scleroderma, when given intraperitoneally. The modest in vivo potency and poor pharmacokinetics (PK) of this lead, however, make it unsuitable for long term efficacy studies. We therefore undertook a systematic medicinal chemistry effort to improve both the metabolic stability and the solubility of 1, resulting in the identification of two analogs achieving over 10-fold increases in plasma exposures in mice. We subsequently showed that one of these analogs (8f, CCG-232601) could inhibit the development of bleomycin-induced dermal fibrosis in mice when administered orally at 50mg/kg, an effect that was comparable to what we had observed earlier with 1 at a 4-fold higher IP dose.


Assuntos
Ácidos Nipecóticos/farmacocinética , Ácidos Nipecóticos/uso terapêutico , Fator Rho/antagonistas & inibidores , Escleroderma Sistêmico/tratamento farmacológico , Pele/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Administração Oral , Animais , Modelos Animais de Doenças , Fibrose , Células HEK293 , Humanos , Camundongos , Ácidos Nipecóticos/administração & dosagem , Ácidos Nipecóticos/química , Fator Rho/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Elemento de Resposta Sérica/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Transativadores/antagonistas & inibidores , Transativadores/metabolismo
3.
ACS Omega ; 8(17): 15650-15659, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151549

RESUMO

The balance between protein degradation and protein synthesis is a highly choreographed process generally called proteostasis. Most intracellular protein degradation occurs through the ubiquitin-proteasome system (UPS). This degradation takes place through either a ubiquitin-dependent or a ubiquitin-independent proteasomal pathway. The ubiquitin-independent pathway selectively targets unfolded proteins, including intrinsically disordered proteins (IDPs). Dysregulation of proteolysis can lead to the accumulation of IDPs, seen in the pathogenesis of various diseases, including cancer and neurodegeneration. Therefore, the enhancement of the proteolytic activity of the 20S proteasome using small molecules has been identified as a promising pathway to combat IDP accumulation. Currently, there are a limited number of known small molecules that enhance the activity of the 20S proteasome, and few are observed to exhibit enhanced proteasome activity in cell culture. Herein, we describe the development of a high-throughput screening assay to identify cell-permeable proteasome enhancers by utilizing an AlphaLISA platform that measures the degradation of a GFP conjugated intrinsically disordered protein, ornithine decarboxylase (ODC). Through the screening of the Prestwick and NIH Clinical Libraries, a kinase inhibitor, erlotinib, was identified as a new 20S proteasome enhancer, which enhances the degradation of ODC in cells and α-synuclein in vitro.

4.
Biochemistry ; 51(7): 1464-75, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22242939

RESUMO

The Eph receptor tyrosine kinases make up an important family of signal transduction molecules that control many cellular processes, including cell adhesion and movement, cell shape, and cell growth. All of these are important aspects of cancer progression, but the relationship between Eph receptors and cancer is complex and not fully understood. Genetic screens of tumor specimens from cancer patients have revealed somatic mutations in many Eph receptors. The most highly mutated Eph receptor is EphA3, but its functional role in cancer is currently not well established. Here we show that many EphA3 mutations identified in lung, colorectal, and hepatocellular cancers, melanoma, and glioblastoma impair kinase activity or ephrin ligand binding and/or decrease the level of receptor cell surface localization. These results suggest that EphA3 has ephrin- and kinase-dependent tumor suppressing activities, which are disrupted by somatic cancer mutations.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/genética , Receptores Proteína Tirosina Quinases/genética , Membrana Celular/metabolismo , Progressão da Doença , Efrina-A3/química , Fibronectinas/química , Células HEK293 , Humanos , Immunoblotting/métodos , Modelos Biológicos , Modelos Genéticos , Neoplasias/patologia , Conformação Proteica , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphA3 , Transdução de Sinais
5.
ACS Appl Bio Mater ; 5(6): 2643-2663, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35544705

RESUMO

Albumin-based hydrogels offer unique benefits such as biodegradability and high binding affinity to various biomolecules, which make them suitable candidates for biomedical applications. Here, we report a non-immunogenic photocurable human serum-based (HSA) hydrogel synthesized by methacryloylation of human serum albumin by methacrylic anhydride (MAA). We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, liquid chromatography-tandem mass spectrometry, as well as size exclusion chromatography to evaluate the extent of modification, hydrolytic and enzymatic degradation of methacrylated albumin macromer and its cross-linked hydrogels. The impacts of methacryloylation and cross-linking on alteration of inflammatory response and toxicity were evaluated in vitro using brain-derived HMC3 macrophages and Ex-Ovo chick chorioallantoic membrane assay. Results revealed that the lysines in HSA were the primary targets reacting with MAA, though modification of cysteine, threonine, serine, and tyrosine, with MAA was also confirmed. Both methacrylated HSA and its derived hydrogels were nontoxic and did not induce inflammatory pathways, while significantly reducing macrophage adhesion to the hydrogels; one of the key steps in the process of foreign body reaction to biomaterials. Cytokine and growth factor analysis showed that albumin-based hydrogels demonstrated anti-inflammatory response modulating cellular events in HMC3 macrophages. Ex-Ovo results also confirmed the biocompatibility of HSA macromer and hydrogels along with slight angiogenesis-modulating effects. Photocurable albumin hydrogels may be used as a non-immunogenic platform for various biomedical applications including passivation coatings.


Assuntos
Hidrogéis , Albumina Sérica Humana , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/farmacologia , Humanos , Hidrogéis/farmacologia , Espectrometria de Massas , Albumina Sérica Humana/química
6.
Sci Rep ; 9(1): 7072, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068602

RESUMO

The stromal reaction in pancreatic cancer creates a physical barrier that blocks therapeutic intervention and creates an immunosuppressive tumor microenvironment. The Rho/myocardin-related transcription factor (MRTF) pathway is implicated in the hyper-activation of fibroblasts in fibrotic diseases and the activation of pancreatic stellate cells. In this study we use CCG-222740, a small molecule, designed as a Rho/MRTF pathway inhibitor. This compound decreases the activation of stellate cells in vitro and in vivo, by reducing the levels of alpha smooth muscle actin (α-SMA) expression. CCG-222740 also modulates inflammatory components of the pancreas in KC mice (LSL-KrasG12D/+; Pdx-1-Cre) stimulated with caerulein. It decreases the infiltration of macrophages and increases CD4 T cells and B cells. Analysis of the pancreatic adenocarcinoma (PDA) TCGA dataset revealed a correlation between elevated RhoA, RhoC and MRTF expression and decreased survival in PDA patients. Moreover, a MRTF signature is correlated with a Th2 cell signature in human PDA tumors.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína de Ligação a GTP rhoC/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Proteínas de Homeodomínio/genética , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Estreladas do Pâncreas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Células RAW 264.7 , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo
7.
ACS Pharmacol Transl Sci ; 2(2): 92-100, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32039344

RESUMO

A series of compounds (including CCG-1423 and CCG-203971) discovered through an MRTF/SRF-dependent luciferase screen has shown remarkable efficacy in a variety of in vitro and in vivo models, including significant reduction of melanoma metastasis and bleomycin- induced fibrosis. Although these compounds are efficacious in these disease models, the molecular target is unknown. Here, we describe affinity isolation-based target identification efforts which yielded pirin, an iron-dependent cotranscription factor, as a target of this series of compounds. Using biophysical techniques including isothermal titration calorimetry and X-ray crystallography, we verify that pirin binds these compounds in vitro. We also show with genetic approaches that pirin modulates MRTF- dependent luciferase reporter activity. Finally, using both siRNA and a previously validated pirin inhibitor, we show a role for pirin in TGF-ß- induced gene expression in primary dermal fibroblasts. A recently developed analog, CCG-257081, which co crystallizes with pirin, is also effective in the prevention of bleomycin-induced dermal fibrosis.

8.
Sci Rep ; 7(1): 518, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28364121

RESUMO

The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway represents a promising therapeutic target to prevent fibrosis. We have tested the effects of new pharmacological inhibitors of MRTF/SRF signalling in a preclinical model of fibrosis. CCG-222740, a novel MRTF/SRF inhibitor, markedly decreased SRF reporter gene activity and showed a greater inhibitory effect on MRTF/SRF target genes than the previously described MRTF-A inhibitor CCG-203971. CCG-222740 was also five times more potent, with an IC50 of 5 µM, in a fibroblast-mediated collagen contraction assay, was less cytotoxic, and a more potent inhibitor of alpha-smooth muscle actin protein expression than CCG-203971. Local delivery of CCG-222740 and CCG-203971 in a validated and clinically relevant rabbit model of scar tissue formation after glaucoma filtration surgery increased the long-term success of the surgery by 67% (P < 0.0005) and 33% (P < 0.01), respectively, and significantly decreased fibrosis and scarring histologically. Unlike mitomycin-C, neither CCG-222740 nor CCG-203971 caused any detectable epithelial toxicity or systemic side effects with very low drug levels measured in the aqueous, vitreous, and serum. We conclude that inhibitors of MRTF/SRF-regulated gene transcription such as CCG-222740, potentially represent a new therapeutic strategy to prevent scar tissue formation in the eye and other tissues.


Assuntos
Cicatriz/metabolismo , Cicatriz/patologia , Fator de Resposta Sérica/antagonistas & inibidores , Fator de Resposta Sérica/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Animais , Células Cultivadas , Cicatriz/prevenção & controle , Colágeno/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Humanos , Coelhos , Transdução de Sinais/efeitos dos fármacos
9.
Mol Cancer Ther ; 16(1): 193-204, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837031

RESUMO

Melanoma is the most dangerous form of skin cancer with the majority of deaths arising from metastatic disease. Evidence implicates Rho-activated gene transcription in melanoma metastasis mediated by the nuclear localization of the transcriptional coactivator, myocardin-related transcription factor (MRTF). Here, we highlight a role for Rho and MRTF signaling and its reversal by pharmacologic inhibition using in vitro and in vivo models of human melanoma growth and metastasis. Using two cellular models of melanoma, we clearly show that one cell type, SK-Mel-147, is highly metastatic, has high RhoC expression, and MRTF nuclear localization and activity. Conversely, SK-Mel-19 melanoma cells have low RhoC expression, and decreased levels of MRTF-regulated genes. To probe the dependence of melanoma aggressiveness to MRTF transcription, we use a previously developed small-molecule inhibitor, CCG-203971, which at low micromolar concentrations blocks nuclear localization and activity of MRTF-A. In SK-Mel-147 cells, CCG-203971 inhibits cellular migration and invasion, and decreases MRTF target gene expression. In addition, CCG-203971-mediated inhibition of the Rho/MRTF pathway significantly reduces cell growth and clonogenicity and causes G1 cell-cycle arrest. In an experimental model of melanoma lung metastasis, the RhoC-overexpressing melanoma cells (SK-Mel-147) exhibited pronounced lung colonization compared with the low RhoC-expressing SK-Mel-19. Furthermore, pharmacologic inhibition of the MRTF pathway reduced both the number and size of lung metastasis resulting in a marked reduction of total lung tumor burden. These data link Rho and MRTF-mediated signaling with aggressive phenotypes and support targeting the MRTF transcriptional pathway as a novel approach to melanoma therapeutics. Mol Cancer Ther; 16(1); 193-204. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Proteínas rho de Ligação ao GTP/genética , Actinas/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Melanoma/patologia , Camundongos , Metástase Neoplásica , Ácidos Nipecóticos/farmacologia , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína de Ligação a GTP rhoC
10.
Microarrays (Basel) ; 5(2)2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27600078

RESUMO

Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL) and serum response factor (SRF) drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B), which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-ß-d-ribofuranosyl-1H-benzimidazole (DRB) showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis.

11.
Artigo em Inglês | MEDLINE | ID: mdl-24003208

RESUMO

The Eph receptors are the largest of the RTK families. Like other RTKs, they transduce signals from the cell exterior to the interior through ligand-induced activation of their kinase domain. However, the Eph receptors also have distinctive features. Instead of binding soluble ligands, they generally mediate contact-dependent cell-cell communication by interacting with surface-associated ligands-the ephrins-on neighboring cells. Eph receptor-ephrin complexes emanate bidirectional signals that affect both receptor- and ephrin-expressing cells. Intriguingly, ephrins can also attenuate signaling by Eph receptors coexpressed in the same cell. Additionally, Eph receptors can modulate cell behavior independently of ephrin binding and kinase activity. The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. Its abnormal function has been implicated in various diseases, including cancer. Thus, Eph receptors represent promising therapeutic targets. However, more research is needed to better understand the many aspects of their complex biology that remain mysterious.


Assuntos
Comunicação Celular/fisiologia , Efrinas/metabolismo , Modelos Biológicos , Receptor EphA1/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Efrinas/genética , Mutação/genética , Estrutura Terciária de Proteína , Receptor EphA1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA