Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(9): 1445-1448, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35487187

RESUMO

The 2021-2026 Strategic Plan of the National Institute of Neurological Disorders and Stroke began with a vision, a mission, and strategic objectives elaborated from within the institute. This plan is a collaborative product of the institute and its many stakeholders, emphasizing cross-cutting operational principles including scientific rigor, communication, workforce culture, and equity.


Assuntos
National Institute of Neurological Disorders and Stroke (USA) , Planejamento Estratégico , Estados Unidos
2.
J Neurosci ; 39(42): 8275-8284, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619497

RESUMO

The overarching goal of the NIH BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative is to advance the understanding of healthy and diseased brain circuit function through technological innovation. Core principles for this goal include the validation and dissemination of the myriad innovative technologies, tools, methods, and resources emerging from BRAIN-funded research. Innovators, BRAIN funding agencies, and non-Federal partners are working together to develop strategies for making these products usable, available, and accessible to the scientific community. Here, we describe several early strategies for supporting the dissemination of BRAIN technologies. We aim to invigorate a dialogue with the neuroscience research and funding community, interdisciplinary collaborators, and trainees about the existing and future opportunities for cultivating groundbreaking research products into mature, integrated, and adaptable research systems. Along with the accompanying Society for Neuroscience 2019 Mini-Symposium, "BRAIN Initiative: Cutting-Edge Tools and Resources for the Community," we spotlight the work of several BRAIN investigator teams who are making progress toward providing tools, technologies, and services for the neuroscience community. These tools access neural circuits at multiple levels of analysis, from subcellular composition to brain-wide network connectivity, including the following: integrated systems for EM- and florescence-based connectomics, advances in immunolabeling capabilities, and resources for recording and analyzing functional connectivity. Investigators describe how the resources they provide to the community will contribute to achieving the goals of the NIH BRAIN Initiative. Finally, in addition to celebrating the contributions of these BRAIN-funded investigators, the Mini-Symposium will illustrate the broader diversity of BRAIN Initiative investments in cutting-edge technologies and resources.


Assuntos
Neurociências/métodos , Pesquisa , Tecnologia , Humanos
3.
Vis Neurosci ; 34: E013, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28965513

RESUMO

The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.


Assuntos
Corpos Geniculados/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Vias Visuais/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Técnicas de Patch-Clamp , Transmissão Sináptica
4.
J Neurosci ; 34(40): 13492-504, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274826

RESUMO

Studies in rodent epilepsy models suggest that GABAergic interneuron progenitor grafts can reduce hyperexcitability and seizures in temporal lobe epilepsy (TLE). Although integration of the transplanted cells has been proposed as the underlying mechanism for these disease-modifying effects, prior studies have not explicitly examined cell types and synaptic mechanisms for long-term seizure suppression. To address this gap, we transplanted medial ganglionic eminence (MGE) cells from embryonic day 13.5 VGAT-Venus or VGAT-ChR2-EYFP transgenic embryos into the dentate gyrus (DG) of adult mice 2 weeks after induction of TLE with pilocarpine. Beginning 3-4 weeks after status epilepticus, we conducted continuous video-electroencephalographic recording until 90-100 d. TLE mice with bilateral MGE cell grafts in the DG had significantly fewer and milder electrographic seizures, compared with TLE controls. Immunohistochemical studies showed that the transplants contained multiple neuropeptide or calcium-binding protein-expressing interneuron types and these cells established dense terminal arborizations onto the somas, apical dendrites, and axon initial segments of dentate granule cells (GCs). A majority of the synaptic terminals formed by the transplanted cells were apposed to large postsynaptic clusters of gephyrin, indicative of mature inhibitory synaptic complexes. Functionality of these new inhibitory synapses was demonstrated by optogenetically activating VGAT-ChR2-EYFP-expressing transplanted neurons, which generated robust hyperpolarizations in GCs. These findings suggest that fetal GABAergic interneuron grafts may suppress pharmacoresistant seizures by enhancing synaptic inhibition in DG neural circuits.


Assuntos
Epilepsia/cirurgia , Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Channelrhodopsins , Modelos Animais de Doenças , Embrião de Mamíferos , Corpos Geniculados/citologia , Corpos Geniculados/transplante , Técnicas In Vitro , Interneurônios/metabolismo , Interneurônios/fisiologia , Interneurônios/transplante , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Potenciais Sinápticos/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
5.
J Neurophysiol ; 112(7): 1714-28, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24966302

RESUMO

The retinogeniculate synapse, the connection between retinal ganglion cells (RGC) and thalamic relay neurons, undergoes robust changes in connectivity over development. This process of synapse elimination and strengthening of remaining inputs is thought to require synapse specificity. Here we show that glutamate spillover and asynchronous release are prominent features of retinogeniculate synaptic transmission during this period. The immature excitatory postsynaptic currents exhibit a slow decay time course that is sensitive to low-affinity glutamate receptor antagonists and extracellular calcium concentrations, consistent with glutamate spillover. Furthermore, we uncover and characterize a novel, purely spillover-mediated AMPA receptor current from immature relay neurons. The isolation of this current strongly supports the presence of spillover between boutons of different RGCs. In addition, fluorescence measurements of presynaptic calcium transients suggest that prolonged residual calcium contributes to both glutamate spillover and asynchronous release. These data indicate that, during development, far more RGCs contribute to relay neuron firing than would be expected based on predictions from anatomy alone.


Assuntos
Corpos Geniculados/crescimento & desenvolvimento , Neurônios/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Animais , Cálcio/fisiologia , Potenciais Pós-Sinápticos Excitadores , Glutamatos/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
6.
J Neurosci ; 32(1): 46-61, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22219269

RESUMO

Cell therapies for neurological disorders require an extensive knowledge of disease-associated neuropathology and procedures for generating neurons for transplantation. In many patients with severe acquired temporal lobe epilepsy (TLE), the dentate gyrus exhibits sclerosis and GABAergic interneuron degeneration. Mounting evidence suggests that therapeutic benefits can be obtained by transplanting fetal GABAergic progenitors into the dentate gyrus in rodents with TLE, but the scarcity of human fetal cells limits applicability in patient populations. In contrast, virtually limitless quantities of neural progenitors can be obtained from embryonic stem (ES) cells. ES cell-based therapies for neurological repair in TLE require evidence that the transplanted neurons integrate functionally and replace cell types that degenerate. To address these issues, we transplanted mouse ES cell-derived neural progenitors (ESNPs) with ventral forebrain identities into the hilus of the dentate gyrus of mice with TLE and evaluated graft differentiation, mossy fiber sprouting, cellular morphology, and electrophysiological properties of the transplanted neurons. In addition, we compared electrophysiological properties of the transplanted neurons with endogenous hilar interneurons in mice without TLE. The majority of transplanted ESNPs differentiated into GABAergic interneuron subtypes expressing calcium-binding proteins parvalbumin, calbindin, or calretinin. Global suppression of mossy fiber sprouting was not observed; however, ESNP-derived neurons formed dense axonal arborizations in the inner molecular layer and throughout the hilus. Whole-cell hippocampal slice electrophysiological recordings and morphological analyses of the transplanted neurons identified five basic types; most with strong after-hyperpolarizations and smooth or sparsely spiny dendritic morphologies resembling endogenous hippocampal interneurons. Moreover, intracellular recordings of spontaneous EPSCs indicated that the new cells functionally integrate into epileptic hippocampal circuitry.


Assuntos
Giro Denteado/fisiologia , Células-Tronco Embrionárias/transplante , Epilepsia do Lobo Temporal/terapia , Interneurônios/fisiologia , Neurogênese/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Linhagem Celular , Giro Denteado/citologia , Giro Denteado/cirurgia , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Interneurônios/química , Interneurônios/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
7.
Curr Biol ; 32(14): 3110-3120.e6, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35793680

RESUMO

In the mouse visual system, multiple types of retinal ganglion cells (RGCs) each encode distinct features of the visual space. A clear understanding of how this information is parsed in their downstream target, the dorsal lateral geniculate nucleus (dLGN), remains elusive. Here, we characterized retinogeniculate connectivity in Cart-IRES2-Cre-D and BD-CreER2 mice, which labels subsets of on-off direction-selective ganglion cells (ooDSGCs) tuned to the vertical directions and to only ventral motion, respectively. Our immunohistochemical, electrophysiological, and optogenetic experiments reveal that only a small fraction (<15%) of thalamocortical (TC) neurons in the dLGN receives primary retinal drive from these subtypes of ooDSGCs. The majority of the functionally identifiable ooDSGC inputs in the dLGN are weak and converge together with inputs from other RGC types. Yet our modeling indicates that this mixing is not random: BD-CreER+ ooDSGC inputs converge less frequently with ooDSGCs tuned to the opposite direction than with non-CART-Cre+ RGC types. Taken together, these results indicate that convergence of distinct information lines in dLGN follows specific rules of organization.


Assuntos
Corpos Geniculados , Vias Visuais , Animais , Corpos Geniculados/fisiologia , Camundongos , Retina , Células Ganglionares da Retina/fisiologia , Tálamo , Vias Visuais/fisiologia
8.
Neurology ; 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257710

RESUMO

At the end of 2020, the National Institute of Neurological Disorders and Stroke, an institute of the National Institutes of Health, completed an 18 month-long strategic planning process that involved and engaged diverse internal and external biomedical and general stakeholders. The Institute published and disseminated its 2021-2026 Strategic Plan online in December 2020. Now, 1 year into its implementation, this progress report presents accomplishments to date, new initiatives and opportunities, and a preview of the metrics and benchmarks we will use to gauge the future progress of the strategic plan's implementation.

9.
Neuron ; 100(1): 120-134.e6, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308165

RESUMO

Microglia regulate synaptic circuit remodeling and phagocytose synaptic material in the healthy brain; however, the mechanisms directing microglia to engulf specific synapses and avoid others remain unknown. Here, we demonstrate that an innate immune signaling pathway protects synapses from inappropriate removal. The expression patterns of CD47 and its receptor, SIRPα, correlated with peak pruning in the developing retinogeniculate system, and mice lacking these proteins exhibited increased microglial engulfment of retinogeniculate inputs and reduced synapse numbers in the dorsal lateral geniculate nucleus. CD47-deficient mice also displayed increased functional pruning, as measured by electrophysiology. In addition, CD47 was found to be required for neuronal activity-mediated changes in engulfment, as microglia in CD47 knockout mice failed to display preferential engulfment of less active inputs. Taken together, these results demonstrate that CD47-SIRPα signaling prevents excess microglial phagocytosis and show that molecular brakes can be regulated by activity to protect specific inputs.


Assuntos
Antígeno CD47/metabolismo , Microglia/metabolismo , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/fisiologia , Receptores Imunológicos/metabolismo
10.
Neuron ; 96(2): 330-338.e5, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024658

RESUMO

Precise connectivity between retinal ganglion cells (RGCs) and thalamocortical (TC) relay neurons is thought to be essential for the transmission of visual information. Consistent with this view, electrophysiological measurements have previously estimated that 1-3 RGCs converge onto a mouse geniculate TC neuron. Recent advances in connectomics and rabies tracing have yielded much higher estimates of retinogeniculate convergence, although not all identified contacts may be functional. Here we use optogenetics and a computational simulation to determine the number of functionally relevant retinogeniculate inputs onto TC neurons in mice. We find an average of ten RGCs converging onto a mature TC neuron, in contrast to >30 inputs before developmental refinement. However, only 30% of retinogeniculate inputs exceed the threshold for dominating postsynaptic activity. These results signify a greater role for the thalamus in visual processing and provide a functional perspective of anatomical connectivity data.


Assuntos
Corpos Geniculados/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Corpos Geniculados/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Vias Visuais/citologia
11.
Neuron ; 84(2): 332-9, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25284005

RESUMO

Mammalian sensory circuits become refined over development in an activity-dependent manner. Retinal ganglion cell (RGC) axons from each eye first map to their target in the geniculate and then segregate into eye-specific layers by the removal and addition of axon branches. Once segregation is complete, robust functional remodeling continues as the number of afferent inputs to each geniculate neuron decreases from many to a few. It is widely assumed that large-scale axon retraction underlies this later phase of circuit refinement. On the contrary, RGC axons remain stable during functional pruning. Instead, presynaptic boutons grow in size and cluster during this process. Moreover, they exhibit dynamic spatial reorganization in response to sensory experience. Surprisingly, axon complexity decreases only after the completion of the thalamic critical period. Therefore, dynamic bouton redistribution along a broad axon backbone represents an unappreciated form of plasticity underlying developmental wiring and rewiring in the CNS.


Assuntos
Axônios/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Vias Visuais/fisiologia , Animais , Corpos Geniculados/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia
12.
Physiol Behav ; 98(4): 381-5, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19583975

RESUMO

The ability of an experimental agent to support conditioned taste/flavor avoidance (CT/FA) in rats often is interpreted as sufficient evidence that the agent produced a state of malaise or nausea. Paradoxically, however, CT/FA also is induced by certain drugs that support conditioned preferences in rats, suggesting that CT/FA is insufficient to reveal a negative hedonic state. The present study tested the hypothesis that the anti-nausea drug ondansetron (OND) would block the ability of nauseogenic lithium chloride (LiCl) to support conditioned place avoidance (CPA), without attenuating LiCl-induced CT/FA. After pre-treatment with either OND or vehicle, rats were conditioned with i.p. injection of 0.15 M LiCl containing 2% saccharin (LiCl+sac) on conditioning day 1, and with 0.15 M NaCl alone on conditioning day 2. Rats were confined to a distinct chamber of a CPA apparatus after each conditioning injection. In other rats, OND or vehicle pre-treatment was followed by NaCl+sac on conditioning day 1, and LiCl alone on day 2. Subsequent testing revealed that OND blocked the ability of LiCl to support CPA. Conversely, in the same rats, OND did not alter the ability of LiCl to condition avoidance of 0.2% sac solution during a 60 min bottle test. In a separate experiment, a sensitive 2-bottle choice test was used to confirm that OND pre-treatment does not reduce the ability of LiCl to support CT/FA. These results support the view that CPA is an additional useful tool to reveal the experience of malaise and nausea in rats, whereas CT/FA demonstrated in bottle intake tests is insufficient for this purpose.


Assuntos
Antimaníacos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Ondansetron/farmacologia , Antagonistas da Serotonina/farmacologia , Paladar/fisiologia , Análise de Variância , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Aromatizantes/farmacologia , Preferências Alimentares/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Sacarina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA