Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(11): 4354-4361, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611952

RESUMO

Particulate matter damages engines of vehicles when blown into the ventilation system. Conventional engine-intake filter is cellulose microfiber board with an average diameter larger than ten microns, which has low removal efficiency of ultrafine particular matter. In this work, we apply ultrafine polyurethane nanofibers (∼122.8 nm) onto pleated cellulose board using scalable multinozzle electroblow spinning technology, which improves filtration efficiency of particulate matter with a diameter of less than 0.3 µm PM0.3 greatly. The thermoplastic polyurethane 85A nanofiber membranes are transparent, and display superior filtration performance which meets up with the 95% filtration efficiency standard in GB 19083-2010 technical requirements for protective face mask for medical use. The lightweight pleated thermoplastic polyurethane/cellulose composites intercept ∼90% ultrafine PM0.3 under airflow velocity of 32 L min-1 and possess great resistance to shock. These hierarchically designed filters follow a mechanical mechanism and can be used in on-road and off-road cars in the long run.


Assuntos
Filtros de Ar , Celulose , Filtração , Material Particulado , Poliuretanos
2.
Mikrochim Acta ; 186(5): 287, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30989406

RESUMO

The authors describe a fluorometric assay for cardiac myoglobin (Mb), a marker for myocardial infarction. An Mb-binding aptamer was labeled with pyrene and adsorbed on the surface of graphene oxide (GO) via noncovalent and reversible binding forces. This causes the fluorescence of pyrene (best measured at excitation/emission wavelengths of 275/376 nm) to be quenched. However, fluorescence is restored on addition of pyrene due to the strong affinity between Mb and aptamer which causes its separation from GO. Fluorescence increases linearly in the 5.6-450 pM Mb concentration range, and the lower detection limit is 3.9 pM (S/N = 3). The assay was applied to the determination of cardiac Mb in spiked serum, and satisfactory results were obtained. Graphical abstract Schematic presentation of the detection of Mb (cardiac myoglobin) by using a fluorometric method based on pyrene-modified anti-Mb aptamer and GO (graphene oxide) through fluorescence quenching and subsequent recovery.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Grafite/química , Miocárdio/metabolismo , Mioglobina/análise , Pirenos/química , Transferência de Energia , Fluorometria , Humanos , Limite de Detecção , Mioglobina/metabolismo
3.
Anal Bioanal Chem ; 410(18): 4285-4291, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29725733

RESUMO

Acute myocardial infarction (AMI) is one of the leading risks to global health. Thus, the rapid, accurate early diagnosis of AMI is highly critical. Human cardiac troponin I (cTnI) has been regarded as a golden biomarker for AMI due to its excellent selectivity. In this work, a novel fluorescent aptasensor based on a graphene oxide (GO) platform was developed for the highly sensitive and selective detection of cTnI. GO binds to the fluorescent anti-cTnI aptamer and quenches its fluorescence. In the presence of cTnI, the fluorescent anti-cTnI aptamer leaves the surface of GO, combines with cTnI because of the powerful affinity of the fluorescent anti-cTnI aptamer and cTnI, and then restores the fluorescence of the fluorescent anti-cTnI aptamer. Fluorescence-enhanced detection is highly sensitive and selective to cTnI. The method exhibited good analytical performance with a reasonable dynamic linearity at the concentration range of 0.10-6.0 ng/mL and a low detection limit of 0.07 ng/mL (S/N = 3). The fluorescent aptasensor also exhibited high selectivity toward cTnI compared with other interference proteins. The proposed method may be a potentially useful tool for cTnI determination in human serum. Graphical abstract A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores/sangue , Corantes Fluorescentes/química , Grafite/química , Infarto do Miocárdio/diagnóstico , Troponina I/sangue , Técnicas Biossensoriais/métodos , Diagnóstico Precoce , Transferência Ressonante de Energia de Fluorescência , Humanos , Limite de Detecção , Infarto do Miocárdio/sangue , Óxidos/química , Sensibilidade e Especificidade
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117714, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31718976

RESUMO

A novel fluorescent biosensor based on dabcyl [(E)-4-((4-(dimethylamino) phenyl) diazenyl)benzoic acid] -modified anti-Mb aptamer (D-AMA) and 6-FAM(6-carboxyfluorescein) -modified complementary short chain (F-CSC)for the specific and sensitive detection of Mb levels is presented in this study. In PBS buffer solution, D-AMA bound to F-CSC, and then dabcyl quenched the fluorescence of 6-FAM. After adding Mb into the system, D-AMA bound to Mb and separated from F-CSC. The fluorescence of 6-FAM was restored after it separated from dabcyl. The assay exhibited high specificity and sensitivity toward Mb, with a low limit of detection of 0.07 ng/mL (S/N = 3) and linear relationships of 0.1-5 ng/mL. It was further applied to detect Mb levels in spiked human blood sera samples.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Fluoresceínas/química , Mioglobina/sangue , Animais , Sequência de Bases , Bovinos , DNA/análise , Humanos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA