Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813609

RESUMO

The lotus (Nelumbo Adans.) is a perennial aquatic plant with important value in horticulture, medicine, food, religion, and culture. It is rich in germplasm and more than 2000 cultivars have been cultivated through hybridization and natural selection. Microsporogenesis and male gametogenesis in the anther are important for hybridization in flowering plants. However, little is known about the cytological events, especially related to the stamen, during the reproduction of the lotus. To better understand the mechanism controlling the male reproductive development of the lotus, we investigated the flower structure of the Asian lotus (N. nucifera). The cytological analysis of anther morphogenesis showed both the common and specialized cytological events as well as the formation of mature pollen grains via meiosis and mitosis during lotus anther development. Intriguingly, an anatomical difference in anther appendage structures was observed between the Asian lotus and the American lotus (N. lutea). To facilitate future study on lotus male reproduction, we categorized pollen development into 11 stages according to the characterized cytological events. This discovery expands our knowledge on the pollen and appendage development of the lotus as well as improving the understanding of the species differentiation of N. nucifera and N. lutea.


Assuntos
Flores/citologia , Nelumbo/anatomia & histologia , Nelumbo/citologia , Parede Celular/ultraestrutura , Flores/ultraestrutura , Nelumbo/ultraestrutura , Pólen/citologia , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura
2.
Int J Mol Sci ; 19(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899256

RESUMO

Drought is an important abiotic factor that threatens the growth and development of plants. Verbena bonariensis is a widely used landscape plant with a very high ornamental value. We found that Verbena has drought tolerance in production practice, so in order to delve into its mechanism of drought resistance and screen out its drought-resistance genes, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze Verbena transcription response to drought stress. By high-throughput sequencing with Illumina Hiseq Xten, a total of 44.59 Gb clean data was obtained from T01 (control group) and T02 (drought experiment group). After assembly, 111,313 unigenes were obtained, and 53,757 of them were annotated by compared databases. In this study, 4829 differentially expressed genes were obtained, of which 4165 were annotated. We performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses, and explored a lot of differently expressed genes related to plant energy production, hormone synthesis, cell signal transduction, and metabolism to understand the stress response of Verbena in drought stress. In addition, we also found that a series of TFs related to drought-resistance of Verbena and provide excellent genetic resources for improving the drought tolerance of crops.


Assuntos
Secas , Estresse Fisiológico , Transcriptoma , Verbena/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Verbena/fisiologia
3.
Plant Divers ; 45(1): 69-79, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36876309

RESUMO

Tropical lotus (Nelumbo) is an important and unique ecological type of lotus germplasm. Understanding the genetic relationship and diversity of the tropical lotus is necessary for its sustainable conservation and utilization. Using 42 EST-SSR (expressed sequence tag-simple sequence repeats) and 30 SRAP (sequence-related amplified polymorphism) markers, we assessed the genetic diversity and inferred the ancestry of representative tropical lotus from Thailand and Vietnam. In total, 164 and 41 polymorphic bands were detected in 69 accessions by 36 EST-SSR and seven SRAP makers, respectively. Higher genetic diversity was revealed in Thai lotus than in Vietnamese lotus. A Neighbor-Joining tree of five main clusters was constructed using combined EST-SSR and SRAP markers. Cluster I included 17 accessions of Thai lotus; cluster II contained three Thai accessions and 11 accessions from southern Vietnam; and cluster III was constituted by 13 accessions of seed lotus. Consistent with the results from the Neighbor-Joining tree, the genetic structure analysis showed that the genetic background of most Thai and Vietnamese lotus was pure, as artificial breeding has been rare in both countries. Furthermore, these analyses indicate that Thai and Vietnamese lotus germplasms belong to two different gene pools or populations. Most lotus accessions are genetically related to geographical distribution patterns in Thailand or Vietnam. Our findings showed that the origin or genetic relationships of some unidentified lotus sources can be evaluated by comparing morphological characteristics and the data of molecular markers. In addition, these findings provide reliable information for the targeted conservation of tropical lotus and parent selection in breeding novel cultivars of lotus.

4.
Plants (Basel) ; 10(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34451674

RESUMO

The lotus (Nelumbo Adans.) is an important aquatic plant with ornamental, medicinal and edible values and cultural connotations. It has single-, semi-double-, double- and thousand-petalled types of flower shape and is an ideal material for developmental research of flower doubling. The lotus is a basal eudicot species without a morphological difference between the sepals and petals and occupies a critical phylogenetic position in flowering plants. In order to investigate the genetic relationship between the sepals and petals in the lotus, the class E genes which affect sepal formation were focused on and analyzed. Here, SEPALLATA 1(NnSEP1) and its homologous genes AGAMOUS-LIKE MADS-BOXAGL9 (NnAGL9) and MADS-BOX TRANSCRIPTION FACTOR 6-like (NnMADS6-like) of the class E gene family were isolated from the flower buds of the Asian lotus (Nelumbo nucifera Gaertn.). The protein structure, subcellular localization and expression patterns of these three genes were investigated. All three genes were verified to locate in the nucleus and had typical MADS-box characteristics. NnSEP1 and NnMADS6-like were specifically expressed in the sepals, while NnAGL9 was highly expressed in the petals, suggesting that different developmental mechanisms exist in the formation of the sepals and petals in the lotus. The significant functional differences between NnSEP1, NnMADS6-like and NnAGL9 were also confirmed by a yeast two-hybrid assay. These results expand our knowledge on the class E gene family in sepal formation and will benefit fundamental research on the development of floral organs in Nelumbo.

5.
PLoS One ; 8(8): e72914, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009713

RESUMO

In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.


Assuntos
Citocininas/farmacologia , Organogênese/efeitos dos fármacos , Organogênese/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Rosa/embriologia , Rosa/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transporte Proteico , Alinhamento de Sequência , Análise de Sequência de DNA , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA