RESUMO
An increase in tau acetylation at K274 and K281 and abnormal mitochondrial dynamics have been observed in the brains of Alzheimer's disease (AD) patients. Here, we constructed three types of tau plasmids, TauKQ (acetylated tau mutant, by mutating its K274/K281 into glutamine to mimic disease-associated lysine acetylation), TauKR (non-acetylated tau mutant, by mutating its K274/K281 into arginine), and TauWT (wild-type human full-length tau). By transfecting these tau plasmids in HEK293 cells, we found that TauWT and TauKR induced mitochondrial fusion by increasing the level of mitochondrial fusion proteins. Conversely, TauKQ induced mitochondrial fission by reducing mitochondrial fusion proteins, exacerbating mitochondrial dysfunction and apoptosis. BGP-15 ameliorated TauKQ-induced mitochondrial dysfunction and apoptosis by improving mitochondrial dynamics. Our findings suggest that acetylation of K274/281 represents an important post-translational modification site regulating mitochondrial dynamics, and that BGP-15 holds potential as a therapeutic agent for mitochondria-associated diseases such as AD.
Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Oximas , Piperidinas , Humanos , Acetilação , Doença de Alzheimer/metabolismo , Apoptose , Células HEK293 , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
The high prevalence of major depressive disorder (MDD) frequently imposes severe constraints on psychosocial functioning and detrimentally impacts overall well-being. Despite the growing interest in the hypothesis of mitochondrial dysfunction, the precise mechanistic underpinnings and therapeutic strategies remain unclear and require further investigation. In this study, an MDD model was established in mice using lipopolysaccharide (LPS). Our research findings demonstrated that LPS exposure induced depressive-like behaviors and disrupted mitophagy by diminishing the mitochondrial levels of PINK1/Parkin in the brains of mice. Furthermore, LPS exposure evoked the activation of the NLRP3 inflammasome, accompanied by a notable elevation in the concentrations of pro-inflammatory factors (TNF-α, IL-1ß, and IL-6). Additionally, neuronal apoptosis was stimulated through the JNK/p38 pathway. The administration of BGP-15 effectively nullified the impact of LPS, corresponding to the amelioration of depressive-like phenotypes and restoration of mitophagy, prevention of neuronal injury and inflammation, and suppression of reactive oxygen species (ROS)-mediated NLRP3 inflammasome activation. Furthermore, we elucidated the involvement of mitophagy in BGP-15-attenuated depressive-like behaviors using the inhibitors targeting autophagy (3-MA) and mitophagy (Mdivi-1). Notably, these inhibitors notably counteracted the antidepressant and anti-inflammatory effects exerted by BGP-15. Based on the research findings, it can be inferred that the antidepressant properties of BGP-15 in LPS-induced depressive-like behaviors could potentially be attributed to the involvement of the mitophagy pathway. These findings offer a potential novel therapeutic strategy for managing MDD.
Assuntos
Depressão , Inflamassomos , Lipopolissacarídeos , Mitocôndrias , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Mitofagia/efeitos dos fármacos , Camundongos , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Depressão/metabolismo , Depressão/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Transtorno Depressivo Maior/metabolismo , Inflamação/metabolismo , Comportamento Animal/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Furanos , Indenos , SulfonamidasRESUMO
δ-Secretase, an age-dependent asparagine protease, cleaves both amyloid precursor protein (APP) and Tau and is required for amyloid plaque and neurofibrillary tangle pathologies in Alzheimer's disease (AD). However, whether δ-secretase activation is sufficient to trigger AD pathogenesis remains unknown. Here we show that the fragments of δ-secretase-cleavage, APP (586-695) and Tau(1-368), additively drive AD pathogenesis and cognitive dysfunctions. Tau(1-368) strongly augments BACE1 expression and Aß generation in the presence of APP. The Tau(1-368) fragment is more robust than full-length Tau in binding active STAT1, a BACE1 transcription factor, and promotes its nuclear translocation, upregulating BACE1 and Aß production. Notably, Aß-activated SGK1 or JAK2 kinase phosphorylates STAT1 and induces its association with Tau(1-368). Inhibition of these kinases diminishes stimulatory effect of Tau(1-368). Knockout of STAT1 abolishes AD pathologies induced by δ-secretase-generated APP and Tau fragments. Thus, we show that Tau may not only be a downstream effector of Aß in the amyloid hypothesis, but also act as a driving force for Aß, when cleaved by δ-secretase.
Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Emaranhados Neurofibrilares , Fator de Transcrição STAT1 , Proteínas tau/metabolismoRESUMO
Overexpressing Tau counteracts apoptosis and increases dephosphorylated ß-catenin levels, but the underlying mechanisms are elusive. Here, we show that Tau can directly and robustly acetylate ß-catenin at K49 in a concentration-, time-, and pH-dependent manner. ß-catenin K49 acetylation inhibits its phosphorylation and its ubiquitination-associated proteolysis, thus increasing ß-catenin protein levels. K49 acetylation further promotes nuclear translocation and the transcriptional activity of ß-catenin, and increases the expression of survival-promoting genes (bcl2 and survivin), counteracting apoptosis. Mutation of Tau's acetyltransferase domain or co-expressing non-acetylatable ß-catenin-K49R prevents increased ß-catenin signaling and abolishes the anti-apoptotic function of Tau. Our data reveal that Tau preserves ß-catenin by acetylating K49, and upregulated ß-catenin/survival signaling in turn mediates the anti-apoptotic effect of Tau.
Assuntos
Transdução de Sinais , beta Catenina , Proteínas tau , Acetilação , Apoptose/genética , Sobrevivência Celular/genética , Humanos , Fosforilação , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Intracellular tau accumulation forming neurofibrillary tangles is hallmark pathology of Alzheimer's disease (AD), but how tau accumulation induces synapse impairment is elusive. By overexpressing human full-length wild-type tau (termed hTau) to mimic tau abnormality as seen in the brain of sporadic AD patients, we find that hTau accumulation activates JAK2 to phosphorylate STAT1 (signal transducer and activator of transcription 1) at Tyr701 leading to STAT1 dimerization, nuclear translocation, and its activation. STAT1 activation suppresses expression of N-methyl-D-aspartate receptors (NMDARs) through direct binding to the specific GAS element of GluN1, GluN2A, and GluN2B promoters, while knockdown of STAT1 by AAV-Cre in STAT1flox/flox mice or expressing dominant negative Y701F-STAT1 efficiently rescues hTau-induced suppression of NMDAR expression with amelioration of synaptic functions and memory performance. These findings indicate that hTau accumulation impairs synaptic plasticity through JAK2/STAT1-induced suppression of NMDAR expression, revealing a novel mechanism for hTau-associated synapse and memory deficits.
Assuntos
Regulação da Expressão Gênica , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Fator de Transcrição STAT1/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Janus Quinase 2/metabolismo , Transtornos da Memória/psicologia , Camundongos , Modelos Biológicos , Plasticidade Neuronal , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Proteínas tau/genéticaRESUMO
While melatonin is known to have protective effects in mitochondria-related diseases, aging, and neurodegenerative disorders, there is poor understanding of the effects of melatonin treatment on mitophagy in Alzheimer's disease (AD). We used proteomic analysis to investigate the effects and underlying molecular mechanisms of oral melatonin treatment on mitophagy in the hippocampus of 4-month-old wild-type mice versus age-matched 5 × FAD mice, an animal model of AD. 5 × FAD mice showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mtDNA, mitochondrial marker proteins and MDA production, decreased electron transport chain proteins and ATP levels, and co-localization of Lamp1 and Tomm20. Melatonin treatment reversed the abnormal expression of proteins in the signaling pathway of lysosomes, pathologic phagocytosis of microglia, and mitochondrial energy metabolism. Moreover, melatonin restored mitophagy by improving mitophagosome-lysosome fusion via Mcoln1, and thus, ameliorated mitochondrial functions, attenuated Aß pathology, and improved cognition. Concurrent treatment with chloroquine and melatonin blocked the positive behavioral and biochemical effects of administration with melatonin alone. Taken in concert, these results suggest that melatonin reduces AD-related deficits in mitophagy such that the drug should be considered as a therapeutic candidate for the treatment of AD.
Assuntos
Doença de Alzheimer , Melatonina , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Animais , Cognição , Melatonina/farmacologia , Camundongos , Mitofagia , ProteômicaRESUMO
Patients with Alzheimer's disease (AD) commonly show anxiety behaviors, but the molecular mechanisms are not clear and no efficient intervention exists. Here, we found that overexpression of human wild-type, full-length tau (termed htau) in hippocampus significantly decreased the extracellular γ-aminobutyric acid (GABA) level with inhibition of γ oscillation and the evoked inhibitory postsynaptic potential (eIPSP). With tau accumulation, the mice show age-dependent anxiety behaviors. Among the factors responsible for GABA synthesis, release, uptake, and transport, we found that accumulation of htau selectively suppressed expression of the intracellular vesicular GABA transporter (vGAT). Tau accumulation increased miR92a, which targeted vGAT mRNA 3' UTR and inhibited vGAT translation. Importantly, we found that upregulating GABA tones by intraperitoneal injection of midazolam (a GABA agonist), ChR2-mediated photostimulating and overexpressing vGAT, or blocking miR92a by using specific antagomir or inhibitor efficiently rescued the htau-induced GABAergic dysfunctions with attenuation of anxiety. Finally, we also demonstrated that vGAT level decreased while the miR92a increased in the AD brains. These findings demonstrate that the AD-like tau accumulation induces anxiety through disrupting miR92a-vGAT-GABA signaling, which reveals molecular mechanisms underlying the anxiety behavior in AD patients and potentially leads to the development of new therapeutics for tauopathies.
Assuntos
Ansiedade/genética , Ansiedade/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Neurônios GABAérgicos/metabolismo , MicroRNAs/genética , Tauopatias/genética , Tauopatias/metabolismo , Doença de Alzheimer/genética , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Interferência de RNA , Tauopatias/patologia , Proteínas tau/metabolismoRESUMO
Protein phosphatase-2A (PP2A), an important phosphatase in dephosphorylating tau and preserving synapse, is significantly suppressed in Alzheimer's disease (AD), but the mechanism is not well understood. Here, we studied whether phosphotyrosyl phosphatase activator (PTPA) could activate PP2A by reducing its inhibitory phosphorylation at tyrosine 307 (P-PP2AC). We found that overexpression of PTPA activated PP2A by decreasing the level of P-PP2AC with reduced phosphorylation of tau, while knockdown of PTPA inhibited PP2A by increasing the level of P-PP2AC with enhanced tau phosphorylation. We also observed that expression of PTPA could upregulate the protein and mRNA levels of protein tyrosine phosphatase 1B (PTP1B) and simultaneous downregulation of PTP1B eliminated PTPA-induced PP2A activation. Importantly, we also found that the protein level of PTPA is downregulated in the brains of AD patients, and the AD transgenic mouse models with expression of mutant human amyloid precursor protein (hAPP) or the longest human tau (htau), respectively. Our data indicate that PTPA may activate PP2A through activating PTP1B and thus reducing the level of P-PP2AC, therefore upregulation of PTPA may represent a potential strategy in rescuing PP2A and arresting tau pathology in AD.
Assuntos
Doença de Alzheimer/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Regulação para Baixo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Tirosina/metabolismo , Regulação para Cima , Proteínas tau/metabolismoRESUMO
Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and the AD transgenic mouse models. Here, we investigated whether down-regulation of PTPA affects cell viability and the underlying mechanisms. We found that PTPA was located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines. PTPA knockdown decreased mitochondrial membrane potential and induced Bax translocation into the mitochondria with a simultaneous release of Cyt C, activation of caspase-3, cleavage of poly (DNA ribose) polymerase (PARP), and decrease in Bcl-xl and Bcl-2 protein levels. Over-expression of Protein phosphatase 2A (PP2A) catalytic subunit (PP2AC ) did not rescue the apoptosis induced by PTPA knockdown, and PTPA knockdown did not affect the level of and their phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that PP2A and MAPKs were not involved in the apoptosis induced by PTPA knockdown. In the cells with over-expression of tau, PTPA knockdown induced PP2A inhibition and tau hyperphosphorylation but did not cause significant cell death. These data suggest that PTPA deficit causes apoptotic cell death through mitochondrial pathway and simultaneous tau hyperphosphorylation attenuates the PTPA-induced cell death. Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and AD transgenic mouse models. Here, we investigated whether down-regulation of PTPA affects cell viability. We found that PTPA located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines by decreasing mitochondrial membrane potential, which leads to translocation of Bax and a simultaneous release of Cyt C. In the cells with tau over-expression, PTPA knockdown inactivated PP2A to phosphorylate tau to avoid cell apoptosis which induced by PTPA knockdown.
Assuntos
Apoptose/fisiologia , Técnicas de Silenciamento de Genes , Mitocôndrias/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Proteínas tau/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citocromos c/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Camundongos , Neuroblastoma/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Sincalida/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
Deficits of protein phosphatase-2A (PP2A) play a crucial role in tau hyperphosphorylation, amyloid overproduction, and synaptic suppression of Alzheimer's disease (AD), in which PP2A is inactivated by the endogenously increased inhibitory protein, namely inhibitor-2 of PP2A (I2(PP2A)). Therefore, in vivo silencing I2(PP2A) may rescue PP2A and mitigate AD neurodegeneration. By infusion of lentivirus-shRNA targeting I2(PP2A) (LV-siI2(PP2A)) into hippocampus and frontal cortex of 11-month-old tg2576 mice, we demonstrated that expression of LV-siI2(PP2A) decreased remarkably the elevated I2(PP2A) in both mRNA and protein levels. Simultaneously, the PP2A activity was restored with the mechanisms involving reduction of the inhibitory binding of I2(PP2A) to PP2A catalytic subunit (PP2AC), repression of the inhibitory Leu309-demethylation and elevation of PP2AC. Silencing I2(PP2A) induced a long-lasting attenuation of amyloidogenesis in tg2576 mice with inhibition of amyloid precursor protein hyperphosphorylation and ß-secretase activity, whereas simultaneous inhibition of PP2A abolished the antiamyloidogenic effects of I2(PP2A) silencing. Finally, silencing I2(PP2A) could improve learning and memory of tg2576 mice with preservation of several memory-associated components. Our data reveal that targeting I2(PP2A) can efficiently rescue Aß toxicities and improve the memory deficits in tg2576 mice, suggesting that I2(PP2A) could be a promising target for potential AD therapies.
Assuntos
Doença de Alzheimer/terapia , Lentivirus/genética , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteína Fosfatase 2/metabolismo , Interferência de RNA , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos , Células HEK293 , Hipocampo/metabolismo , Chaperonas de Histonas , Humanos , Lentivirus/metabolismo , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Proteína Fosfatase 2/química , RNA Interferente Pequeno/genéticaRESUMO
ABSTRACT: Alzheimer's disease is the most prevalent neurodegenerative disease affecting older adults. Primary features of Alzheimer's disease include extracellular aggregation of amyloid-ß plaques and the accumulation of neurofibrillary tangles, formed by tau protein, in the cells. While there are amyloid-ß-targeting therapies for the treatment of Alzheimer's disease, these therapies are costly and exhibit potential negative side effects. Mounting evidence suggests significant involvement of tau protein in Alzheimer's disease-related neurodegeneration. As an important microtubule-associated protein, tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth. In fact, clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-ß in the brain. Various therapeutic strategies targeting tau protein have begun to emerge, and are considered possible methods to prevent and treat Alzheimer's disease. Specifically, abnormalities in post-translational modifications of the tau protein, including aberrant phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, acetylation, and truncation, contribute to its microtubule dissociation, misfolding, and subcellular missorting. This causes mitochondrial damage, synaptic impairments, gliosis, and neuroinflammation, eventually leading to neurodegeneration and cognitive deficits. This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer's disease and discusses tau-targeted treatment of Alzheimer's disease.
RESUMO
BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.
Assuntos
Doença de Alzheimer , Humanos , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos , Proteômica , Hipocampo/metabolismo , Hipocampo/patologia , Transtornos da Memória/metabolismoRESUMO
Hyperhomocysteinemia (Hhcy) may induce memory deficits with ß-amyloid (Aß) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aß accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer-like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2-week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy-induced memory deficits, enhance long-term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up-regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy-induced tau hyperphosphorylation at multiple AD-related sites through activation protein phosphatase-2A (PP2A) with decreased inhibitory demethylated PP2A(C) at Leu309 and phosphorylated PP2A(C) at Tyr307. In addition, supplementation of betaine also decreased Aß production with decreased presenilin-1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy-induced AD-like pathological changes and memory deficits.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Betaína/toxicidade , Homocisteína/toxicidade , Hiper-Homocisteinemia/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/sangue , Animais , Modelos Animais de Doenças , Homocisteína/sangue , Hiper-Homocisteinemia/induzido quimicamente , Lipotrópicos/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Ratos , Ratos Sprague-DawleyRESUMO
Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.
RESUMO
Increased tau acetylation at K274 and K281 has been observed in the brains of Alzheimer's disease (AD) patients and animal models, and mitochondrial dysfunction are noticeable and early features of AD. However, the effect of acetylated tau on mitochondria has been unclear until now. Here, we constructed three type of tau forms, acetylated tau mutant by mutating its K274/K281 into Glutamine (TauKQ) to mimic disease-associated lysine acetylation, the non-acetylation tau mutant by mutating its K274/K281 into Arginine (TauKR) and the wild-type human full-length tau (TauWT). By overexpression of these tau forms in vivo and in vitro, we found that, TauKQ induced more severe cognitive deficits with neuronal loss, dendritic plasticity damage and mitochondrial dysfunctions than TauWT. Unlike TauWT induced mitochondria fusion, TauKQ not only induced mitochondria fission by decreasing mitofusion proteins, but also inhibited mitochondrial biogenesis via reduction of PGC-1a/Nrf1/Tfam levels. TauKR had no significant difference in the cognitive and mitochondrial abnormalities compared with TauWT. Treatment with BGP-15 rescued impaired learning and memory by attenuation of mitochondrial dysfunction, neuronal loss and dendritic complexity damage, which caused by TauKQ. Our data suggested that, acetylation at K274/281 was an important post translational modification site for tau neurotoxicity, and BGP-15 is a potential therapeutic drug for AD.
Assuntos
Doença de Alzheimer , Proteínas tau , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Oximas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
Sleep insufficiency is associated with various disorders; the molecular basis is unknown until now. Here, 14 males and 18 females were subjected to short-term (24 h) sleep deprivation, and donated fasting blood samples prior to (day 1) and following (days 2 and 3) short-term sleep deprivation. We used multiple omics techniques to examine changes in volunteers' blood samples that were subjected to integrated, biochemical, transcriptomic, proteomic, and metabolomic analyses. Sleep deprivation caused marked molecular changes (46.4% transcript genes, 59.3% proteins, and 55.6% metabolites) that incompletely reversed by day 3. The immune system in particular neutrophil-mediated processes associated with plasma superoxidase dismutase-1 and S100A8 gene expression was markedly affected. Sleep deprivation decreased melatonin levels and increased immune cells, inflammatory factors and c-reactive protein. By disease enrichment analysis, sleep deprivation induced signaling pathways for schizophrenia and neurodegenerative diseases enriched. In sum, this is the first multiomics approach to show that sleep deprivation causes prominent immune changes in humans, and clearly identified potential immune biomarkers associated with sleep deprivation. This study indicated that the blood profile following sleep disruption, such as may occur among shift workers, may induce immune and central nervous system dysfunction.
RESUMO
One of the earliest neuropathological changes in Alzheimer disease (AD) is the accumulation of astrocytes at sites of ß-amyloid (Aß) deposits, but the cause of this cellular response is unclear. As the activity of protein phosphatase 2A (PP2A) is significantly decreased in the AD brains, we studied the role of PP2A in astrocytes migration. We observed unexpectedly that PP2A activity associated with glial fibrillary acidic protein, an astrocyte marker, was significantly upregulated in tg2576 mice, demonstrated by an increased enzyme activity, a decreased demethylation at leucine-309 (DM-PP2Ac), and a decreased phosphorylation at tyrosine-307 of PP2A (pY307-PP2Ac). Further studies by using in vitro wound-healing model and transwell assay demonstrated that upregulation of PP2A pharmacologically and genetically could stimulate astrocytes migration. Activation of PP2A promotes actin organization and inhibits p38 mitogen-activated protein kinases (p38 MAPK), while simultaneous activation of p38 MAPK partially abolishes the PP2A-induced astrocytes migration. Our data suggest that activation of astrocytes PP2A in tg2567 mice may stimulate the migration of astrocytes to the amyloid plaques by p38 MAPK inhibition, implying that PP2A deficits observed in AD may cause Aß accumulation via hindering the astrocytes migration.
Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Movimento Celular/fisiologia , Proteína Fosfatase 2/metabolismo , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Células Cultivadas , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína Fosfatase 2/genética , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
GSK-3ß (glycogen synthase kinase-3ß), a crucial tau kinase, negatively regulates PP2A (protein phosphatase 2A), the most active tau phosphatase that is suppressed in the brain in AD (Alzheimer's disease). However, the molecular mechanism is not understood. In the present study we found that activation of GSK-3ß stimulates the inhibitory phosphorylation of PP2A at Tyr307 (pY307-PP2A), whereas inhibition of GSK-3ß decreased the level of pY307-PP2A both in vitro and in vivo. GSK-3ß is a serine/threonine kinase that can not phosphorylate tyrosine directly, therefore we measured PTP1B (protein tyrosine phosphatase 1B) and Src (a tyrosine kinase) activities. We found that GSK-3ß can modulate both PTP1B and Src protein levels, but it only inhibits PTP1B activity, with no effect on Src. Furthermore, only knockdown of PTP1B but not Src by siRNA (small interfering RNA) eliminates the effects of GSK-3ß on PP2A. GSK-3ß phosphorylates PTP1B at serine residues, and activation of GSK-3ß reduces the mRNA level of PTP1B. Additionally, we also observed that GSK-3 negatively regulates the protein and mRNA levels of PP2A, and knockdown of CREB (cAMP-response-element-binding protein) abolishes the increase in PP2A induced by GSK-3 inhibition. The results of the present study suggest that GSK-3ß inhibits PP2A by increasing the inhibitory Tyr307 phosphorylation and decreasing the expression of PP2A, and the mechanism involves inhibition of PTP1B and CREB.
Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Quinases da Família src/metabolismo , Androstadienos/farmacologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos , Serina/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tirosina/metabolismo , Wortmanina , Proteínas tau/metabolismoRESUMO
PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.