Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 18(1): 155, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506091

RESUMO

BACKGROUND: A microorganism engineered for non-native tasks may suffer stresses it never met before. Therefore, we examined whether a Kluyveromyces marxianus strain engineered with a carotenoid biosynthesis pathway can serve as an anti-stress chassis for building cell factories. RESULTS: Carotenoids, a family of antioxidants, are valuable natural products with high commercial potential. We showed that the free radical removal ability of carotenoids can confer the engineered host with a higher tolerance to ethanol, so that it can produce more bio-ethanol than the wild type. Moreover, we found that this engineered strain has improved tolerance to other toxic effects including furfurals, heavy metals such as arsenate (biomass contaminant) and isobutanol (end product). Furthermore, the enhanced ethanol tolerance of the host can be applied to bioconversion of a natural medicine that needs to use ethanol as the delivery solvent of hydrophobic precursors. The result suggested that the engineered yeast showed enhanced tolerance to ethanol-dissolved hydrophobic 10-deacetylbaccatin III, which is considered a sustainable precursor for paclitaxel (taxol) bioconversion. CONCLUSIONS: The stress tolerances of the engineered yeast strain showed tolerance to several toxins, so it may serve as a chassis for cell factories to produce target products, and the co-production of carotenoids may make the biorefinary more cost-effective.


Assuntos
Carotenoides/metabolismo , Etanol/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/metabolismo , Engenharia Metabólica , Fermentação
2.
Biotechnol Biofuels ; 14(1): 200, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645498

RESUMO

BACKGROUND: Isobutanol is considered a potential biofuel, thanks to its high-energy content and octane value, limited water solubility, and compatibility with gasoline. As its biosynthesis pathway is known, a microorganism, such as Saccharomyces cerevisiae, that inherently produces isobutanol, can serve as a good engineering host. Isobutanol's toxicity, however, is a major obstacle for bioproduction. This study is to understand how yeast tolerates isobutanol. RESULTS: A S. cerevisiae gene-deletion library with 5006 mutants was used to screen genes related to isobutanol tolerance. Image recognition was efficiently used for high-throughput screening via colony size on solid media. In enrichment analysis of the 161 isobutanol-sensitive clones identified, more genes than expected were mapped to tryptophan biosynthesis, ubiquitination, and the pentose phosphate pathway (PPP). Interestingly, adding exogenous tryptophan enabled both tryptophan biosynthesis and PPP mutant strains to overcome the stress. In transcriptomic analysis, cluster analysis of differentially expressed genes revealed the relationship between tryptophan and isobutanol stress through some specific cellular functions, such as biosynthesis and transportation of amino acids, PPP, tryptophan metabolism, nicotinate/nicotinamide metabolism (e.g., nicotinamide adenine dinucleotide biosynthesis), and fatty acid metabolism. CONCLUSIONS: The importance of tryptophan in yeast's tolerance to isobutanol was confirmed by the recovery of isobutanol tolerance in defective strains by adding exogenous tryptophan to the growth medium. Transcriptomic analysis showed that amino acid biosynthesis- and transportation-related genes in a tryptophan biosynthesis-defective host were up-regulated under conditions similar to nitrogen starvation. This may explain why ubiquitination was required for the protein turnover. PPP metabolites may serve as precursors and cofactors in tryptophan biosynthesis to enhance isobutanol tolerance. Furthermore, the tolerance mechanism may also be linked to tryptophan downstream metabolism, including the kynurenine pathway and nicotinamide adenine dinucleotide biosynthesis. Both pathways are responsible for cellular redox balance and anti-oxidative ability. Our study highlights the central role of tryptophan in yeast's isobutanol tolerance and offers new clues for engineering a yeast host with strong isobutanol tolerance.

3.
Bioresour Technol ; 184: 2-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25537137

RESUMO

The algal ß-carotene hydroxylase gene Crchyb from Chlamydomonas reinhardtii, Czchyb from Chlorella zofingiensis, or Hpchyb from Haematococcus pluvialis and six other carotenoid-synthesis pathway genes were co-integrated into the genome of a yeast host. Each of these three algal genes showed a higher efficiency to convert ß-carotene to downstream carotenoids than the fungal genes from Phaffia rhodozyma. Furthermore, the strain with Hpchyb displayed a higher carotenoid productivity than the strains integrated with Crchyb or Czchyb, indicating that Hpchyb is more efficient than Crchyb and Czchyb. These results suggest that ß-carotene hydroxylase plays a crucial role in the biosynthesis of carotenoids.


Assuntos
Vias Biossintéticas , Carotenoides/biossíntese , Clorófitas/enzimologia , Clorófitas/genética , Engenharia Genética , Oxigenases de Função Mista/genética , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA