Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 308(1): L1-10, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25305246

RESUMO

Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation.


Assuntos
Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Liso/fisiologia , Miosinas/metabolismo , Traqueia/fisiologia , Quinases Associadas a rho/metabolismo , Actomiosina/metabolismo , Animais , Inalação/fisiologia , Proteína Quinase C/metabolismo , Ovinos
2.
Can J Physiol Pharmacol ; 93(3): 163-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25615545

RESUMO

Airway smooth muscle (ASM) plays a central role in the excessive narrowing of the airway that characterizes the primary functional impairment in asthma. This phenomenon is known as airway hyper-responsiveness (AHR). Emerging evidence suggests that the development and maintenance of ASM force involves dynamic reorganization of the subcellular filament network in both the cytoskeleton and the contractile apparatus. In this review, evidence is presented to support the view that regulation of ASM contraction extends beyond the classical actomyosin interaction and involves processes within the cytoskeleton and at the interfaces between the cytoskeleton, the contractile apparatus, and the extracellular matrix. These processes are initiated when the muscle is activated, and collectively they cause the cytoskeleton and the contractile apparatus to undergo structural transformation, resulting in a more connected and solid state that allows force generated by the contractile apparatus to be transmitted to the extracellular domain. Solidification of the cytoskeleton also serves to stiffen the muscle and hence the airway. Oscillatory strain from tidal breathing and deep inspiration is believed to be the counter balance that prevents hypercontraction and stiffening of ASM in vivo. Dysregulation of this balance could lead to AHR seen in asthma.


Assuntos
Pulmão/fisiologia , Músculo Liso/fisiologia , Asma/fisiopatologia , Citoesqueleto/fisiologia , Humanos , Pulmão/crescimento & desenvolvimento , Modelos Biológicos , Desenvolvimento Muscular/fisiologia , Músculo Liso/crescimento & desenvolvimento
3.
J Physiol ; 591(23): 5867-78, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24081161

RESUMO

Myosin molecules from smooth muscle and non-muscle cells are known to self-assemble into side-polar filaments in vitro. However, the in situ mechanism of filament assembly is not clear and the question of whether there is a unique length for myosin filaments in smooth muscle is still under debate. In this study we measured the lengths of 16,587 myosin filaments in three types of smooth muscle cells using serial electron microscopy (EM). Sheep airway and pulmonary arterial smooth muscle as well as rabbit carotid arterial smooth muscle were fixed for EM and serial ultra-thin (50-60 nm) sections were obtained. Myosin filaments were traced in consecutive sections to determine their lengths. The results indicate that there is not a single length for the myosin filaments; instead there is a wide variation in lengths. The plots of observation frequency versus myosin filament length follow an exponential decay pattern. Analysis suggests that in situ assembly of myosin filaments in smooth muscle is governed by random processes of linear polymerization and de-polymerization, and that the dynamic equilibrium of these processes determines the observed length distribution.


Assuntos
Miócitos de Músculo Liso/ultraestrutura , Miosinas/ultraestrutura , Animais , Artérias Carótidas/citologia , Diafragma/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Artéria Pulmonar/citologia , Coelhos , Ovinos , Traqueia/citologia
4.
J Appl Physiol (1985) ; 115(10): 1540-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24072407

RESUMO

The structurally dynamic cytoskeleton is important in many cell functions. Large gaps still exist in our knowledge regarding what regulates cytoskeletal dynamics and what underlies the structural plasticity. Because Rho-kinase is an upstream regulator of signaling events leading to phosphorylation of many cytoskeletal proteins in many cell types, we have chosen this kinase as the focus of the present study. In detergent skinned tracheal smooth muscle preparations, we quantified the proteins eluted from the muscle cells over time and monitored the muscle's ability to respond to acetylcholine (ACh) stimulation to produce force and stiffness. In a partially skinned preparation not able to generate active force but could still stiffen upon ACh stimulation, we found that the ACh-induced stiffness was independent of calcium and myosin light chain phosphorylation. This indicates that the myosin light chain-dependent actively cycling crossbridges are not likely the source of the stiffness. The results also indicate that Rho-kinase is central to the ACh-induced stiffness, because inhibition of the kinase by H1152 (1 µM) abolished the stiffening. Furthermore, the rate of relaxation of calcium-induced stiffness in the skinned preparation was faster than that of ACh-induced stiffness, with or without calcium, suggesting that different signaling pathways lead to different means of maintenance of stiffness in the skinned preparation.


Assuntos
Citoesqueleto/enzimologia , Contração Muscular , Miócitos de Músculo Liso/enzimologia , Traqueia/enzimologia , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Acetilcolina/farmacologia , Animais , Cálcio/metabolismo , Forma Celular , Elasticidade , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ovinos , Transdução de Sinais , Fatores de Tempo , Traqueia/citologia , Traqueia/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA