RESUMO
At various stages of ovarian follicular development, more than 99% of follicles will be eliminated through a degenerative process called atresia. The regulatory mechanisms of atresia have been elucidated to some extent, involving hormones, growth factors, cytokines, and other factors. However, the stimuli initiating atresia in follicular granulosa cells remain unknown. In this study, we isolated the granulosa cells from porcine ovarian follicles (3-5 mm diameter) divided into healthy follicles (HFs) and early atretic follicles (EAFs). We applied high-throughput RNA sequencing to identify and compare differentially expressed genes (DEGs) between HFs and EAFs. A total of 31,694 genes were detected, of which 21,806 were co-expressed in six samples, and 243 genes (p < 0.05; FDR < 0.05) were differentially expressed (DEGs), including 123 downregulated and 120 upregulated in EAFs. GO analysis highlighted hormone metabolism, plasma membrane localization, and transporter activity. The pathway analysis indicated that 51 DEGs, involved in steroidogenesis, cell adhesion molecules, and TGF-beta signaling pathways, were highly related to atresia. Additionally, the interaction network of DEGs (p < 0.01; FDR < 0.05) using STRING highlighted LHR, ACACB, and CXCR4 as central nodes. In summary, this transcriptome analysis enriched our knowledge of the shifted mechanisms in granulosa cells during early atresia and provided novel perspectives into the atresia initiation.
Assuntos
Folículo Ovariano , Transcriptoma , Feminino , Animais , Suínos/genética , Células da Granulosa/metabolismo , Perfilação da Expressão Gênica/veterinária , ApoptoseRESUMO
Circular RNAs (circRNAs) are an abundant class of endogenous non-coding RNAs (ncRNAs) generated from exonic, intronic, or untranslated regions of protein-coding genes or intergenic regions. The diverse, stable, and specific expression patterns of circRNAs and their possible functions through cis/trans regulation and protein-coding mechanisms make circRNA a research hotspot in various biological and pathological processes. It also shows practical value as biomarkers, diagnostic indicators, and therapeutic targets. This review summarized the characteristics, classification, biogenesis and elimination, detection and confirmation, and functions of circRNAs. We focused on research advances circRNAs in the mammalian ovary under conditions including ovarian cancer, polycystic ovarian syndrome (PCOS), and maternal aging, as well as during reproductive status, including ovarian follicle development and atresia. The roles of circRNAs in high reproductive traits in domestic animals were also summarized. Finally, we outlined some obstructive factors and prospects to work with circRNA, aiming to provide insights into the functional research interests of circRNAs in the reproduction and gynecology areas.
Assuntos
Síndrome do Ovário Policístico , RNA Circular , Humanos , Animais , Feminino , RNA Circular/genética , RNA Circular/metabolismo , Síndrome do Ovário Policístico/genética , Íntrons , Éxons , Mamíferos/metabolismoRESUMO
Ovarian granulosa cells (GC) play an essential role in the development and atresia of follicles. Emerging studies suggest that non-coding RNAs are involved in the regulation of GC apoptosis. Here, we aimed to analyze the function of ssc-circINHA-001, coded by the first exon of the inhibin subunit α gene (INHA), in resisting GC apoptosis and follicular atresia by enhancing the expression of the inhibin subunit ß A (INHBA) through a cluster of miRNAs. A higher expression of ssc-circINHA-001 in healthy follicles compared to early atretic follicles was detected by qRT-PCR. Its circular structure was confirmed by RNase R treatment and reversed PCR. The function of ssc-circINHA-001 in GC resistance to apoptosis was detected by in vitro transfection of its si-RNA. Furthermore, the dual-luciferase reporter assay suggested that ssc-circINHA-001 adsorbed three miRNAs, termed miR-214-5p, miR-7144-3p, and miR-9830-5p, which share the common target INHBA. A low expression of ssc-circINHA-001 increased the levels of the free miRNAs, inhibited INHBA expression, and thus raised GCs apoptosis through a shift from the secretion of activin to that of inhibin. Our study demonstrated the existence of a circRNA-microRNAs-INHBA regulatory axis in follicular GC apoptosis and provides insight into the relationship between circRNA function and its coding gene in inhibin/activin balance and ovarian physiological functions.
Assuntos
Ativinas/genética , Apoptose , Atresia Folicular/metabolismo , Células da Granulosa/metabolismo , Inibinas/genética , MicroRNAs/genética , RNA Circular/metabolismo , Animais , Feminino , Atresia Folicular/fisiologia , Regulação da Expressão Gênica , Células da Granulosa/fisiologia , Inibinas/metabolismo , MicroRNAs/metabolismo , Ovário/metabolismo , Ovário/fisiologia , Sus scrofa/genética , Sus scrofa/metabolismo , Sus scrofa/fisiologiaRESUMO
Objective: As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism. Methods: Eight liver samples were collected from White Large of 70-day fetus (P70) and of 70-day piglets (D70) (with 4 biologocal repeats at each development period) to construct sRNA libraries. Then the eight prepared sRNA libraries were sequenced using Illumina next-generation sequencing techonogy on HiSeq 2500 platform. Results: As a result, we obtained 346 known and 187 novel miRNAs. Compared with the D70, 55 down- and 61 up-regulated miRNAs were shown to be significantly differentially expressed (DE). GO and KEGG enrichment analysis indicated that these DE miRNAs were mainly involved in growth, development and diverse metabolic processes. They were predicted to regulate lipid metabolism through Adipocytokine signaling pathway, MAPK, AMPK, cAMP, PI3K-AKT, and Notch signaling pathway. miR-122, miR-26a and miR-30a-5p, which play important roles in lipid metabolism, were the most abundantly expressed (miR-122 only in P70). Integration analysis (details of mRNAs sequencing data were shown in another unpublished paper) revealed that many target genes of the DE miRNAs (miR-181b, miR-145-5p, miR-199a-5p and miR-98) might be critical regulators in lipid metabolic process, including ACSL4, ABCA4 and SCD. Thus, these miRNAs were considered to be the promising candidates for lipid metabolism. Conclusion: Our study provides the main differences in the Large White at miRNA level between two different developmental stages. It supplies a valuable database for the further function and mechanism elucidation of miRNAs in porcine liver development and lipid metabolism.
RESUMO
With the continuous growth of the global economy, an increasing concern has emerged among individuals with regard to personal digital health. Smart fiber-based sensors meet people's demands for wearable devices with the advantages of excellent skin-friendliness and breathability, enabling efficient and prompt monitoring of personal digital health signals in daily life. Furthermore, by integrating machine learning and big data analysis techniques, a closed-loop system can be established for personal digital health, covering data collection, data analysis, as well as medical diagnosis and treatment. Herein, we provide a review of the recent research progress on fiber-based wearable sensors for personal digital health. Firstly, a brief introduction is provided to demonstrate the importance of fiber-based wearable sensors in personal digital health. Then, the monitoring of biophysical signals through fiber-based sensors is described, and they are classified based on different sensing principles in biophysical signal monitoring (resistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and thermoelectric). After that, the fiber-based biochemical signal sensors are described through the classification of monitoring targets (biofluids and respiratory gases). Finally, a summary is presented on the application prospects and the prevailing challenges of fiber-based sensors, aiming to implement their future role in constructing personal digital health networks.
RESUMO
Currently, comorbidities of obesity are becoming increasingly frequent. For example, obese women are more susceptible to reproductive diseases; however, the underlying mechanism remains poorly understood. The present study aimed to explore the effect of obesity on female reproduction and discuss changes of the lipid profile in ovarian granulosa cells. Fifty female mice were randomly divided into two groups, one group was fed high-fat diet, the other group was fed standard control diet, food and water freely. After 12 weeks of feeding, the average body weight of the high-fat diet mice (19.027g) was significantly higher than that of the standard control diet mice (36.877g) (P < 0.05). The tissue sections were stained with oil red O, and the online software mage Pro plus 6.0 analyzed the staining results, the lipids in the ovaries and endometria were found to be different between the two groups. Liquid chromatography-electrospray ionization with tandem mass spectrometry (LC-ESI-MS/MS) analysis of ovarian granulosa cells (GCs) was performed, with a total of 228 different lipids being identified, the abundant of 147 were increased and 81 were decreased in the high-fat diet group. Among them, PI (18:1/20:1) was the most different lipid, and high-fat feeding was 85 times higher than standard control group. Among these different lipids, 44% in phospholipid metabolism, 30% in glycerolipid metabolism, and 30% in fat digestion and absorption. The results of this study laid a theoretical foundation of the effects of diet-induced obesity on female reproduction.
Assuntos
Dieta Hiperlipídica , Espectrometria de Massas em Tandem , Animais , Feminino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Células da Granulosa/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , ReproduçãoRESUMO
Follicular atresia occurs in every stage of ovarian development, which is relevant to female fertility. In the past decade, increasing studies have confirmed that miRNAs, a class of short non-coding RNAs, play an important role in follicular atresia by post-transcription regulation of their target genes. However, the function of miRNAs on follicular atresia initiation is unknown. In the present study, high-throughput small RNA sequencing was performed to analyze differential miRNA expression profiles between healthy (HF) follicles and early atretic (EAF) follicles. A total of 237 conserved miRNA were detected, and the miR-143 is the highest expressed in follicles. Meanwhile, we also found wide sequence variations (isomiRs) in porcine ovarian miRNA, including in 5'un-translation region, core seed sequences and 3'untranslation region. Furthermore, we identified 22 differentially expressed miRNAs in EAF groups compared to HF group, of which 3 miRNAs were upregulated, as well as 19 miRNAs were downregulated, and then the RT-PCR was performed to validate these profiles. The target genes of these differentially expressed miRNAs were predicted by using miRwalk, miRDB, and Targetscan database, respectively. Moreover, the gene ontology and KEGG pathway enrichment established that the regulating functions and signaling pathways of these miRNAs contribute to follicular atresia initiation and cell fate. In conclusion, this study provides new insights into the changes of miRNAs in early atretic follicles to demonstrate their molecular regulation in ovarian follicular atretic initiation.
RESUMO
The transcriptional initiation of genes is closely bound to the functions of cis-regulatory elements, including promoters, typical enhancers (TEs), and recently-identified super-enhancers (SEs). In this study, we identified these cis-regulatory elements in the livers of two Chinese (Meishan and Enshi Black) and two Western (Duroc and Large White) pig breeds using ChIP-seq data, then explored their similarities and differences. In addition, we analyzed the conservation of SEs among different tissues and species (pig, human, and mouse). We observed that SEs were more significantly enriched by transcriptional initiation regions, TF binding sites, and SNPs than other cis-elements. Western breeds included fewer SEs in number, while more growth-related QTLs were associated with these SEs. Additionally, the SEs were highly tissue-specific, and were conserved in the liver among humans, pigs, and mice. We concluded that intense selection could concentrate functional SEs; thus, SEs could be applied as effective detection regions in genomic selection breeding.
RESUMO
The current study examined the liver transcriptomic profiles of the Large White different in developmental periods. It was performed on pigs of two developmental stages: 70-day fetus (P70) and 70-day piglets (D70). The objective of the study was to identify genes associated with Large White liver lipid metabolism, growth and development. We sequenced eight sRNA libraries of liver samples from four Large White at P70 and D70 respectively. We totally obtained 19,202 genes. 4916 of them were found to be differentially expressed (DEGs) (pâ¯<â¯0.05, fold changeâ¯≥â¯1), of which 2502 were up-regulated and 2414 were down-regulated. GO enrichment and KEGG pathway analysis indicated that ACACA, ACADM, ACAA2 and HADH were simultaneously enriched in diverse pathways related to lipid metabolism, and so they were considered to be the promising candidate genes which could affect the porcine liver lipid metabolism. Notably, the gene insulin-like growth factor 1 (IGF1) which participated in somatotropic axis signaling was found to be up-regulated in D70 compared with P70. miRWalk and TargetScan softwares were used to screen the miRNAs which bound to the 3' untranslated region (3'UTR) of IGF1. After integration analysis with miRNAs sequencing data, miR-18b and miR-130b-3p were selected for further study. MiR-18b and miR-130b-3p were down-regulated in D70 compared with P70. Dual luciferase assays indicated that miR-18b and miR-130b-3p could obviously decrease (pâ¯<â¯0.05) the fluorescence activity of the group transfected with the wild-type vector of IGF1 3'UTR, while the relative luciferase activity of the group transfected with the mutant vector of IGF1 3'UTR did not change significantly. Taken together, it indicated that miR-18b and miR-130b-3p could target IGF1 directly.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Fígado/metabolismo , Suínos , Animais , Suínos/genética , Suínos/crescimento & desenvolvimentoRESUMO
Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 (PLIN1) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.