Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(50): 18504-18513, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38033201

RESUMO

Amino acids (AAs) in the d-form are involved in multiple pivotal neurological processes, although their l-enantiomers are most commonly found. Mass spectrometry-based analysis of low-abundance d-AAs has been hindered by challenging enantiomeric separation from l-AAs, low sensitivity for detection, and lack of suitable internal standards for accurate quantification. To address these critical gaps, N,N-dimethyl-l-leucine (l-DiLeu) tags are first validated as novel chiral derivatization reagents for chromatographic separation of 20 pairs of d/l-AAs, allowing the construction of a 4-plex isobaric labeling strategy for enantiomer-resolved quantification through single step tagging. Additionally, the creative design of N,N-dimethyl-d-leucine (d-DiLeu) reagents offers an alternative approach to generate analytically equivalent internal references of d-AAs using d-DiLeu-labeled l-AAs. By labeling cost-effective l-AA standards using paired d- and l-DiLeu, this approach not only enables absolute quantitation of both d-AAs and l-AAs from complex biological matrices with enhanced precision but also significantly boosts the combined signal intensities from all isobaric channels, greatly improving the detection and quantitation of low-abundance AAs, particularly d-AAs. We term this quantitative strategy CHRISTMAS, which stands for chiral pair isobaric labeling strategy for multiplexed absolute quantitation. Leveraging the ion mobility collision cross section (CCS) alignment, interferences from coeluting isomers/isobars are effectively filtered out to provide improved quantitative accuracy. From wild-type and Alzheimer's disease (AD) mouse brains, we successfully quantified 20 l-AAs and 5 d-AAs. The significant presence and differential trends of certain d-AAs compared to those of their l-counterparts provide valuable insights into the involvement of d-AAs in aging, AD progression, and neurodegeneration.


Assuntos
Aminoácidos , Proteômica , Animais , Camundongos , Aminoácidos/análise , Proteômica/métodos , Leucina/química , Aminas , Cromatografia Líquida/métodos
2.
J Org Chem ; 86(1): 892-916, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320008

RESUMO

Synthesis of type I LacNAc (Galß1 → 3GlcNAc) oligosaccharides usually suffers from low yields. We herein report the efficient synthesis of type I LacNAc oligosaccharides by chemoselective glycosylation. With 16 relative reactivity values (RRVs) measured thiotoluenyl-linked disaccharide donors and acceptors, chemoselective glycosylations were investigated to obtain optimal conditions. In these reactions, the RRV difference between the donors and acceptors had to be more than 6311 to obtain type I LacNAc tetrasaccharides in 72-86% yields, with minimal occurrence of aglycon transfer. The threshold of RRV difference was further applied to plan the synthesis of longer glycans. Because it is challenging to measure the RRVs of tetrasaccharides, anomeric proton chemical shifts were utilized to predict the corresponding RRVs, which consequently explained the outcome of glycosylations for the synthesis of type I LacNAc hexasaccharides. The result supported the idea that elongation of glycan chains has to proceed from the reducing to the nonreducing end for a better yield.

3.
Nat Chem ; 16(5): 762-770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365942

RESUMO

Mass spectrometry-based quantitative lipidomics is an emerging field aiming to uncover the intricate relationships between lipidomes and disease development. However, quantifying lipidomes comprehensively in a high-throughput manner remains challenging owing to the diverse lipid structures. Here we propose a diazobutanone-assisted isobaric labelling strategy as a rapid and robust platform for multiplexed quantitative lipidomics across a broad range of lipid classes, including various phospholipids and glycolipids. The diazobutanone reagent is designed to conjugate with phosphodiester or sulfate groups, while accommodating various functional groups on different lipid classes, enabling subsequent isobaric labelling for high-throughput multiplexed quantitation. Our method demonstrates excellent performance in terms of labelling efficiency, detection sensitivity, quantitative accuracy and broad applicability to various biological samples. Finally, we performed a six-plex quantification analysis of lipid extracts from lean and obese mouse livers. In total, we identified and quantified 246 phospholipids in a high-throughput manner, revealing lipidomic changes that may be associated with obesity in mice.


Assuntos
Glicolipídeos , Lipidômica , Fosfolipídeos , Espectrometria de Massas em Tandem , Animais , Glicolipídeos/química , Fosfolipídeos/química , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Camundongos , Sulfatos/química , Fígado/metabolismo , Fígado/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA