Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698518

RESUMO

Tree peony black spot (TPBS), mainly caused by Alternaria suffruticosae, is a common leaf disease on the ornamental peony, which posed a great threat on the flower buds in the current year and the flowering quality in the next year. However, there was only one fungicide registered for the control of the disease, difenoconazole. In order to avoid the severe problem of pathogen resistance caused by long-term use of difenoconazole, it is necessary to screen more chemical fungicides for the prevention and control of TPBS. In the paper, the biological activities of flutolanil, phenamacril, pyraclostrobin, and boscalid on mycelial growth, conidial germination, germ tube elongation and sporulation quantity of A. suffruticosae were determined, and field control efficacy were conducted to evaluate the preventive and therapeutic activities. Difenoconazole, was used as a control simultaneously. The results showed that pyraclostrobin had the strongest inhibitory effects on the conidial germination, mycelium growth, germ tube elongation and sporulation quantity, with the average EC50 of 0.0517, 0.5343, 0.0008 and 0.8068 µg/mL respectively. The inhibitory activity of flutolanil on the four developmental stages of A. suffruticosae was weaker than the other three fungicides. Compared with flutolanil, boscalid, the other succinate dehydrogenase inhibitors, had more srtong inhibitory effects on the mycelial growth and sporulation quantity, with the average EC50 of 3.8603 and 1.4760 µg/mL respectively. Phenamacril had a moderate inhibitory level, which had more inhibitory activity on conidial germination and germ tube elongation, with the average EC50 of 31.5349 and 5.2597 µg/mL. All of the four fungicides had no significant effects on the shape of spores and germ tubes. The control fungicide difenoconazole had the strongest inhibitory activity on mycelial growth, and the average EC50 was only 0.3297 µg/ml. However, its inhibitory activity on the other three growth stages was not high. In the field trials, pyraclostrobin had high control efficacy on TPBS even at low concentrations, reaching a minimum of 62.6293%, which was higher than that of difenoconazole. The other three fungicides had higher control efficacy at high concentrations, but decreased significantly at low concentrations. Considering the dosage and control efficacy, pyraclostrobin was the first choice for the control of TPBS. Pyraclostrobin is the preferred alternative fungicide of difenoconazole for the prevention and control of TPBS in production.

2.
Chin Med J (Engl) ; 134(5): 508-517, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33177389

RESUMO

ABSTRACT: Neuropilins (NRP1 and NRP2) are multifunctional receptor proteins that are involved in nerve, blood vessel, and tumor development. NRP1 was first found to be expressed in neurons, but subsequent studies have demonstrated its surface expression in cells from the endothelium and lymph nodes. NRP1 has been demonstrated to be involved in the occurrence and development of a variety of cancers. NRP1 interacts with various cytokines, such as vascular endothelial growth factor family and its receptor and transforming growth factor ß1 and its receptor, to affect tumor angiogenesis, tumor proliferation, and migration. In addition, NRP1+ regulatory T cells (Tregs) play an inhibitory role in tumor immunity. High numbers of NRP1+ Tregs were associated with cancer prognosis. Targeting NRP1 has shown promise, and antagonists against NRP1 have had therapeutic efficacy in preliminary clinical studies. NRP1 treatment modalities using nanomaterials, targeted drugs, oncolytic viruses, and radio-chemotherapy have gradually been developed. Hence, we reviewed the use of NRP1 in the context of tumorigenesis, progression, and treatment.


Assuntos
Neoplasias , Neuropilina-1 , Humanos , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular
3.
Steroids ; 101: 116-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26087061

RESUMO

The complex structure of human aromatase (CYP19) and the open form of ΔTGEE mutant NADPH-cytochrome P450 reductase (mCPR) was constructed using template-based protein alignment method. Dynamic simulation of formed complex was performed on NAMD 2.9, in which CHARMm all 27_prot_lipid_na force field and an explicit TIP3P water solvent model were applied. The result showed mCPR in its open conformation could steadily combine with aromatase from the proximal face. Data analysis indicates hydrogen bonds and four salt bridges on the binding surface enhance the interaction between the two protein molecules. Amino acid, Lys108 plays a key role in aromatase activity through the formation of a salt bridge with Asp147 and two hydrogen bonds with Asp147 and Gln150 in mCPR. The optimal pathway for the first electron transfer from CPR to aromatase was revealed and calculated using HARLEM software. The rates for solvent mediated and non-solvent mediated electron transfer from FMNH2 to heme were determined as 1.04×10(6)s(-)(1) and 4.86×10(5)s(-)(1) respectively, which indicates the solvent water can facilitate the electron transfer from FMNH2 to heme. This study presents a novel strategy for the study of the protein-protein interactions based on the template-based protein alignment, which may help new aromtase development targeting the electron transfer between mCPR and aromatase.


Assuntos
Aromatase/química , Aromatase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Transporte de Elétrons , Humanos , Simulação de Dinâmica Molecular , Mutação , NADPH-Ferri-Hemoproteína Redutase/genética , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA