Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomed Chromatogr ; 38(6): e5861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501361

RESUMO

Fraxinus mandshurica (Oleaceae) is used as a traditional medicinal plant for the treatment of red eyes, menstrual disorders, excessive leucorrhea, chronic bronchitis and psoriasis. To perform chemical characterization of the secondary metabolites of F. mandshurica roots, bark, stems and leaves, 32 samples were collected from eight provinces in this study. A total of 64 chemical components were detected from four different parts of F. mandshurica by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Meanwhile, a total of nine secoiridoids were obtained by natural product chemical extraction, isolation and identification methods. Quantitative analysis by high-performance liquid chromatography-diode array detection-mass spectrometry showed the highest total content of secoiridoids in the bark, which is also consistent with the traditional medicinal parts. The results of methodological validation showed that the correlation coefficient (R2) values were all >0.9993, indicating a good linear range of the standard curve, while the relative standard deviations of precision, reproducibility and stability were <3%, and the spiked recoveries ranged from 98.22 to 102.27%, indicating that the experimental method was reliable and stable. In addition, fingerprinting and a heatmap were established to demonstrate the content trends of F. mandshurica more visually from different origins. Multivariate analysis, including principal component analysis and partial least squares discriminant analysis, was performed to determine the chemical characteristics of different parts of F. mandshurica, and six characteristic secoiridoids that could be used to distinguish different origins were screened. Finally, the inhibition of tyrosinase, α-glucosidase, acetylcholinesterase and pancreatic lipase activities by the nine characteristic compounds and extracts from different parts were investigated, and the results showed that they all exhibited different degrees of enzyme activity inhibition and thus have potential applications in whitening and blemish removal, hypoglycemia, anti-Alzheimer's disease and anti-obesity as a new source of natural enzyme activity inhibitors. This study establishes an identification and evaluation method applicable to phytochemistry of different origins, which is a guideline for quality control, origin evaluation and clinical application of traditional medicinal plants. This is also an unprecedented study on the identification of the chemical composition of different parts of F. mandshurica, characteristic compounds and the inhibition of enzyme activity of extracts from different parts.


Assuntos
Fraxinus , Extratos Vegetais , Fraxinus/química , Cromatografia Líquida de Alta Pressão/métodos , Análise Multivariada , Reprodutibilidade dos Testes , Extratos Vegetais/química , Modelos Lineares , Espectrometria de Massas/métodos , Limite de Detecção , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise
2.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276619

RESUMO

DAPB, a new molecule including danshensu, borneol, and a mother nucleus of ACEI (Angiotensin-converting enzyme inhibitors), is being developed as an antihypertensive candidate compound. A rapid, accurate, and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established and validated for the determination of DAPB in rat plasma. Chromatographic separation was performed on an Agilent SB-C18 column after protein precipitation by acetonitrile with a mobile phase consisting of acetonitrile and deionized water with 0.02% formic acid and 5 mM NH4F (v/v) at a flow rate of 0.2 mL/min. Quantification was performed using electrospray positive ionization mass spectrometry in the multiple reaction monitoring (MRM) mode. The method was linear over the range of 2-1000 ng/mL. The intra- and inter-day precision was within 12%, with accuracies less than 7%. Stability was within the acceptable limits under various storage and processing conditions. No apparent matrix effect was detected. The validated method was applied to the pre-clinical pharmacokinetic study of DAPB after oral administration of 30 mg/kg and intravenous administration of 6 mg/kg in rats.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Acetonitrilas
3.
Opt Lett ; 47(8): 2028-2031, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427328

RESUMO

Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interest as a highly sensitive label-free tool to detect pollutants in aqueous environments. However, the high cost and poor reusability of conventional SERS substrates restrict their further applications in rapid and reproducible pollutant detection. Here, we report a reliable optical manipulation method to achieve rapid photothermal self-assembly of Au nanoparticles (AuNPs) in water within 30 s by a tapered optical fiber, which is utilized for highly sensitive SERS substrate preparation. The results show that the SERS substrate achieves low detection limits of 10-9 mol/L with an enhancement factor (EF) of 106 for chemical pollutants solutions, including thiram, pyrene, and rhodamine 6G. The SERS enhancement effect based on assembled AuNPs was more than 20 times that based on a gold colloid solution. As a result, the smart reversible assembly of AuNPs exhibits switchable plasmonic coupling for tuning SERS activity, which is promising for the application of SERS-based sensors and environmental pollutant detection.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
4.
Opt Lett ; 46(19): 4714-4717, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598181

RESUMO

The synergistic integration of optofluidic and surface enhanced Raman scattering (SERS) sensing is a new analytical technique that provides a number of unique characteristics for enhancing the sensing performance and simplifying the design of microsystems. Here, we propose a reusable optofluidic SERS sensor by integrating Au nanoisland substrate (AuNIS)-coated fiber into a microfluidic chip. Through both systematic experimental and theoretical analysis, the sensor enables efficient self-cleaning based on its optical-to-heat-hydrodynamic energy conversion property. Besides, the sensor exhibits the instrument detection limit down to 10-13mol/L and enhancement factor of 106 for Rhodamine 6G. Our optofluidic SERS sensor with such a photothermal microfluidic-assisted self-cleaning method has the advantages of portability, simple operation, and high cleaning efficiency, which will provide a new, to the best of our knowledge, concept and approach for cost-effective and reusable sensors.

5.
Opt Lett ; 45(7): 1998-2001, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236052

RESUMO

Optofluidic manipulation of droplets is critical in droplet-based microfluidic systems for chemistry, biology, and medicine. Here, we reported a thermocapillary microvortices-based manipulation platform for controlling oil-in-water droplets through integrating a photothermal waveguide into a microfluidic chip. The sizes and shapes of the droplets can be controlled by adjusting optical power or positions of the water-oil interface. Here, teardrop-shaped droplets, which can encapsulate and accumulate mesoscopic matters easily, were generated when the water-oil interface and the channel boundaries approached the photothermal waveguide center simultaneously. The results showed that the thermocapillary microvortices have good controllability of droplet positions, droplet volumes, and encapsulated-particle distribution and thus it will be a powerful droplet manipulation strategy for microreactors and microcapsules.

6.
Opt Lett ; 44(7): 1868-1871, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933168

RESUMO

In advanced biomedicine and microfluidics, there is a strong desire to sort and manipulate various cells and bacteria based on miniaturized microfluidic chips. Here, by integrating fiber tweezers into a T-type microfluidic channel, we report an optofluidic chip to selectively trap Escherichia coli in human blood solution based on different sizes and shapes. Furthermore, we simulate the trapping and pushing regions of other cells and bacteria, including rod-shaped bacteria, sphere-shaped bacteria, and cancer cells based on finite-difference analysis. With the advantages of controllability, low optical power, and compact construction, the strategy may be possibly applied in the fields of optical separation, cell transportation, and water quality analysis.


Assuntos
Separação Celular/instrumentação , Miniaturização/instrumentação , Fibras Ópticas , Pinças Ópticas , Animais , Desenho de Equipamento , Eritrócitos/microbiologia , Escherichia coli/citologia , Humanos
7.
Opt Express ; 26(26): 34665-34674, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650887

RESUMO

Lately, a fiber-based optical tweezer that traps and arranges the micro/nano-particles is crucial in practical applications, because such a device can trap the biological samples and drive them to the designated position in a microfluidic system or vessel without harming them. Here, we report a new type of fiber optical tweezer, which can trap and arrange erythrocytes. It is prepared by coating graphene on the cross section of a microfiber. Our results demonstrate that thermal-gradient-induced natural convection flow and thermophoresis can trap the erythrocytes under low incident power, and the optical scattering force can arrange them precisely under higher incident power. The proposed optical tweezer has high flexibility, easy fabrication, and high integration with lab-on-a-chip, and shows considerable potential for application in various fields, such as biophysics, biochemistry, and life sciences.


Assuntos
Eritrócitos/química , Grafite/química , Dispositivos Lab-On-A-Chip , Nanoestruturas/química , Fibras Ópticas , Pinças Ópticas , Animais , Camundongos
8.
Org Biomol Chem ; 15(18): 3938-3946, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28436523

RESUMO

The coupling reaction mechanisms of the Rh(iii)-catalyzed redox-neutral C7-selective aryl C-H functionalization of indolines with alkynes and alkenes have been theoretically investigated with the aid of the density functional theory (DFT) calculations. Our calculation results indicate that the active catalyst in this system is the cationic species [Cp*Rh(OAc)]+ (2cat) instead of the neutral species Cp*Rh(OAc)2 (1cat). The origin of forming different products associated with using different coupling partners was also rationalized in detail. For the coupling reaction of N-methoxycarbamoyl-protected indoline (1a) with alkyl alkyne (4a), the electronic effect plays a dominant role and causes the six-membered ring product to be the main product. For the coupling reaction of 1a with aryl alkyne (2a), through the replacement of alkyl alkyne with aryl alkyne, the steric effect serves as a crucial factor, compared with the electronic effect, and leads to the main seven-membered ring product. For the coupling reaction of 1a with acrylate (6a), the chemoselectivity is dictated by the steric effect and electronic effect.

9.
J Org Chem ; 80(8): 4164-75, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25793552

RESUMO

A mild and convenient protocol for direct synthesis of ß-mannosides has been developed. Glycosylation of 4,6-O-benzylidene-protected mannosyl ortho-hexynylbenzoates with various alcohol acceptors catalyzed by gold(I) complex proceeded smoothly at 0 °C to room temperature and afforded the corresponding ß-mannoside in high yield and satisfactory stereoselectivity. This reaction was applied to the total synthesis of acremomannolipin A and its analogue.


Assuntos
Benzoatos/química , Glicolipídeos/química , Glicolipídeos/síntese química , Ouro/química , Manosídeos/química , Catálise , Glicosilação , Estrutura Molecular
10.
Adv Sci (Weinh) ; 11(26): e2401631, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654695

RESUMO

Flexible and miniaturized photodetectors, offering a fast response across the ultraviolet (UV) to millimeter (MM) wave spectrum, are crucial for applications like healthcare monitoring and wearable optoelectronics. Despite their potential, developing such photodetectors faces challenges due to the lack of suitable materials and operational mechanisms. Here, the study proposes a flexible photodetector composed of a monolayer graphene connected by two distinct metal electrodes. Through the photothermoelectric effect, these asymmetric electrodes induce electron flow within the graphene channel upon electromagnetic wave illumination, resulting in a compact device with ultra-broadband and rapid photoresponse. The devices, with footprints ranging from 3 × 20 µm2 to 50 × 20 µm2, operate across a spectrum from 325 nm (UV) to 1.19 mm (MM) wave. They demonstrate a responsivity (RV) of up to 396.4 ± 5.1 mV W-1, a noise-equivalent power (NEP) of 8.6 ± 0.1 nW Hz- 0.5, and a response time as small as 0.8 ± 0.1 ms. This device facilitates direct imaging of shielded objects and material differentiation under simulated human body-wearing conditions. The straightforward device architecture, aligned with its ultra-broadband operational frequency range, is anticipated to hold significant implications for the development of miniaturized, wearable, and portable photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA