Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 611
Filtrar
1.
Cell ; 186(13): 2897-2910.e19, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37295417

RESUMO

Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.


Assuntos
Inteligência Artificial , Infertilidade Masculina , Masculino , Humanos , Microscopia Crioeletrônica , Motilidade dos Espermatozoides/genética , Sêmen , Espermatozoides , Microtúbulos/metabolismo , Cauda do Espermatozoide/química , Cauda do Espermatozoide/metabolismo , Proteínas dos Microtúbulos/química , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
2.
Physiol Rev ; 104(3): 1335-1385, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451235

RESUMO

The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.


Assuntos
Canais Iônicos , Humanos , Animais , Canais Iônicos/metabolismo , Membranas Intracelulares/metabolismo , Organelas/metabolismo , Organelas/fisiologia
3.
Mol Cell ; 82(11): 2032-2049.e7, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35460603

RESUMO

Virus infection modulates both host immunity and host genomic stability. Poly(ADP-ribose) polymerase 1 (PARP1) is a key nuclear sensor of DNA damage, which maintains genomic integrity, and the successful application of PARP1 inhibitors for clinical anti-cancer therapy has lasted for decades. However, precisely how PARP1 gains access to cytoplasm and regulates antiviral immunity remains unknown. Here, we report that DNA virus induces a reactive nitrogen species (RNS)-dependent DNA damage and activates DNA-dependent protein kinase (DNA-PK). Activated DNA-PK phosphorylates PARP1 on Thr594, thus facilitating the cytoplasmic translocation of PARP1 to inhibit the antiviral immunity both in vitro and in vivo. Mechanistically, cytoplasmic PARP1 interacts with and directly PARylates cyclic GMP-AMP synthase (cGAS) on Asp191 to inhibit its DNA-binding ability. Together, our findings uncover an essential role of PARP1 in linking virus-induced genome instability with inhibition of host immunity, which is of relevance to cancer, autoinflammation, and other diseases.


Assuntos
Antivirais , Nucleotidiltransferases , Antivirais/farmacologia , Citoplasma/genética , Citoplasma/metabolismo , DNA , Dano ao DNA , Instabilidade Genômica , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo
4.
Blood ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457773

RESUMO

Haemoglobin Bart's hydrops fetalis syndrome (BHFS) represents the most severe form of α-thalassaemia, arising from deletion of the duplicated α-globin genes from both alleles. The absence of α-globin leads to the formation of non-functional haemoglobin Bart's (γ4) or haemoglobin H (HbH: ß4) resulting in severe anaemia, tissue hypoxia, and, in some cases, variable congenital or neurocognitive abnormalities. BHFS is the most common cause of hydrops fetalis in Southeast Asia; however, owing to global migration, the burden of this condition is increasing worldwide. With the availability of intensive perinatal care and intrauterine transfusions, an increasing number of patients survive with this condition. The current approach to long-term management of survivors involves regular blood transfusions and iron chelation, a task made challenging by the need for intensified transfusions to suppress the production of non-functional HbH-containing erythrocytes. While our knowledge of outcomes of this condition is evolving, it seems, in comparison to individuals with transfusion-dependent ß-thalassaemia, those with BHFS may face an elevated risk of complications arising from chronic anaemia and hypoxia, ongoing haemolysis, iron overload, and from their respective treatments. Although stem cell transplantation remains a viable option for a select few, it is not without potential side effects. Looking ahead, potential advancements in the form of genetic engineering and innovative therapeutic approaches, such as the reactivation of embryonic α-like globin gene expression, hold promise for furthering the treatment of this condition. Prevention remains a crucial aspect of care, particularly in areas with high prevalence or limited resources.

5.
J Infect Dis ; 229(1): 117-121, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565805

RESUMO

Using a prospective, observational cohort study during the post-"dynamic COVID-zero" wave in China, we estimated short-term relative effectiveness against Omicron BA.5 infection of inhaled aerosolized adenovirus type 5-vectored ancestral strain coronavirus disease 2019 (COVID-19) vaccine as a second booster dose approximately 1 year after homologous boosted primary series of inactivated COVID-19 vaccine compared with no second booster. Participants reported nucleic acid or antigen test results weekly until they tested positive or completed predesignated follow-up. After excluding participants infected <14 days after study entry, relative effectiveness among the 6576 participants was 61% in 18- to 59-year-olds and 38% in ≥60-year-olds and was sustained for 12 weeks.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Estudos Prospectivos , Eficácia de Vacinas , China/epidemiologia , Adenoviridae/genética
6.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792097

RESUMO

Defects in the structure or motility of cilia and flagella may lead to severe diseases such as primary ciliary dyskinesia (PCD), a multisystemic disorder with heterogeneous manifestations affecting primarily respiratory and reproductive functions. We report that CFAP61 is a conserved component of the calmodulin- and radial spoke-associated complex (CSC) of cilia. We find that a CFAP61 splice variant, c.143+5G>A, causes exon skipping/intron retention in human, inducing a multiple morphological abnormalities of the flagella (MMAF) phenotype. We generated Cfap61 knockout mice that recapitulate the infertility phenotype of the human CFAP61 mutation, but without other symptoms usually observed in PCD. We find that CFAP61 interacts with the CSC, radial spoke stalk and head. During early stages of Cfap61-/- spermatid development, the assembly of radial spoke components is impaired. As spermiogenesis progresses, the axoneme in Cfap61-/- cells becomes unstable and scatters, and the distribution of intraflagellar transport proteins is disrupted. This study reveals an organ-specific mechanism of axoneme stabilization that is related to male infertility.


Assuntos
Infertilidade Masculina , Proteínas de Membrana , Mutação Puntual , Cauda do Espermatozoide/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Animais , Axonema/genética , Axonema/metabolismo , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Splicing de RNA
7.
BMC Plant Biol ; 24(1): 323, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658848

RESUMO

BACKGROUND: Water stress seriously affects the survival of plants in natural ecosystems. Plant resistance to water stress relies on adaptive strategies, which are mainly based on plant anatomy with following relevant functions: (1) increase in water uptake and storage; (2) reduction of water loss; and (3) mechanical reinforcement of tissues. We measured 15 leaf-stem anatomical traits of five dominant shrub species from 12 community plots in the eastern Qaidam Basin to explore adaptive strategies based on plant leaf-stem anatomy at species and community levels. and their relationship with environmental stresses were tested. RESULTS: Results showed that the combination of leaf-stem anatomical traits formed three types of adaptive strategies with the drought tolerance of leaf and stem taken as two coordinate axes. Three types of water stress were caused by environmental factors in the eastern Qaidam Basin, and the established adaptive strategy triangle could be well explained by these environmental stresses. The interpretation of the strategic triangle was as follows: (1) exploitative plant strategy, in which leaf and stem adopt the hydraulic efficiency strategy and safety strategy, respectively. This strategy is mostly applied to plants in sandy desert (i.e., Nitraria tangutorum, and Artemisia sphaerocephala) which is mainly influenced by drought stress; (2) stable plant strategy, in which both leaf/assimilation branches and stem adopt hydraulic safety strategy. This strategy is mostly applied to plants in salty desert (i.e., Kalidium foliatum and Haloxylon ammodendron) which aridity has little effect on them; and (3) opportunistic plant strategy, in which leaf and stem adopt hydraulic safety strategy and water transport efficiency strategy. This strategy is mostly applied to plants in multiple habitats (i.e., Sympegma regelii) which is mainly affected by coldness stress. CONCLUSION: The proposed adaptive strategy system could provide a basis for elucidating the ecological adaptation mechanism of desert woody plants and the scientific management of natural vegetation in the Qinghai-Tibet Plateau.


Assuntos
Adaptação Fisiológica , Folhas de Planta , Caules de Planta , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Secas , Água/metabolismo , China , Ecossistema , Estresse Fisiológico
8.
Small ; 20(2): e2305508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670540

RESUMO

Single-atom catalysts (SACs) with specific N-coordinated configurations immobilized on the carbon substrates have recently been verified to effectively alleviate the shuttle effect of lithium polysulfides (LiPSs) in lithium-sulfur (Li─S) batteries. Herein, a versatile molten salt (KCl/ZnCl2 )-mediated pyrolysis strategy is demonstrated to fabricate Zn SACs composed of well-defined Zn-N4 sites embedded into porous carbon sheets with rich pyridine-N defects (Zn─N/CS). The electrochemical kinetic analysis and theoretical calculations reveal the critical roles of Zn-N4 active sites and surrounding pyridine-N defects in enhancing adsorption toward LiPS intermediates and catalyzing their liquid-solid conversion. It is confirmed by reducing the overpotential of the rate-determining step of Li2 S2 to Li2 S and the energy barrier for Li2 S decomposition, thus the Zn─N/CS guarantees fast redox kinetics between LiPSs and Li2 S products. As a proof of concept demonstration, the assembled Li─S batteries with the Zn─N/CS-based sulfur cathode deliver a high specific capacity of 1132 mAh g-1 at 0.1 C and remarkable capacity retention of 72.2% over 800 cycles at 2 C. Furthermore, a considerable areal capacity of 6.14 mAh cm-2 at 0.2 C can still be released with a high sulfur loading of 7.0 mg cm-2 , highlighting the practical applications of the as-obtained Zn─N/CS cathode in Li─S batteries.

9.
Chemistry ; 30(39): e202400292, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38769938

RESUMO

Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×105 M-1 at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.

10.
Genet Res (Camb) ; 2024: 3058875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283987

RESUMO

Background: Tesmin, a 60 kDa protein encoded by the metallothionein-like 5 (MTL5) gene, plays a vital role in spermatogenesis and oogenesis. Recent research has unveiled its potential involvement in malignancies, although its impact on HCC remains poorly understood. Methods: In this study, we sought to elucidate the clinical significance of tesmin in HCC patients. We investigated the relationship between tesmin expression and the prognosis of individuals with hepatocellular carcinoma (HCC), as well as its potential role in tumor proliferation and invasion. Immunohistochemistry (IHC) was employed to assess the expression of tesmin in HCC tissues. Chi-square tests were conducted to analyze the correlation between tesmin expression and various clinicopathological features among HCC patients. For survival analysis, we employed the Kaplan-Meier method and conducted Cox regression analyses. To investigate the functional role of tesmin, we utilized shRNA constructs for transfection-mediated knockdown. Proliferation was assessed using the CCK-8 assay, and invasive capability was determined through Matrigel Transwell assays. Results: IHC results indicated that tesmin expression was prominently observed in cancerous tissue. Notably, we observed a significant association between tesmin expression and tumor stage and invasion in HCC patients from both our medical center and TCGA dataset. Survival analysis further revealed that tesmin expression emerged as an independent prognostic factor for overall survival among individuals with HCC. Furthermore, cellular experiments demonstrated that knockdown of tesmin led to decreased proliferation and invasion of HCC cells. Conclusions: Our findings suggest that tesmin may serve as a novel prognostic marker for HCC, highlighting its potential as a target for further research into HCC treatment. Additionally, the functional experiments support the notion that tesmin may participate in promoting the proliferation and invasion of HCC cells, warranting further investigations into its mechanistic involvement in HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metalotioneína , Humanos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Relevância Clínica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metalotioneína/genética , Prognóstico
11.
FASEB J ; 37(1): e22722, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571509

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS), which is caused by a novel Bunyavirus, has gradually become a threatening infectious disease in rural areas of Asia. Studies have identified a severe cytokine storm and impaired humoral immune response in SFTS. However, the cellular immune response to SFTS virus (SFTSV) infection remains largely unknown. Here we report that SFTS patients had a cytokine storm accompanied by high levels of chemokines. CD8+ T cells in peripheral blood mononuclear cells of SFTS patients exhibited a more activated phenotype and enhanced the antiviral responses. They increased the expression of CD69 and CD25, secreted a higher level of IFN-γ and granzyme, and had a stronger proliferative ability than in healthy controls. In convalescent SFTS patients, the expression of CD69 and CD25 on CD8+ T cells was reduced. In addition, we found the ratio and cellularity of CD14+ CD16+ intermediate monocytes were increased in peripheral blood of SFTS patients. Both the expression of C-X-C motif chemokine ligand 10 (CXCL10) on CD14+ CD16+ intermediate monocytes and the expression of C-X-C motif chemokine receptor 3 (CXCR3) on CD8+ T cells increased dramatically in SFTS patients. Our studies reveal a potential pathway that CD8+ T cells rapidly activate and are mostly recruited by intermediate monocytes through CXCL10 in SFTSV infection. Our results may be of clinical relevance for further treatment and discharge instructions in SFTSV infections.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Infecções por Bunyaviridae/tratamento farmacológico , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Síndrome da Liberação de Citocina , Trombocitopenia/tratamento farmacológico , Antivirais/uso terapêutico
12.
Langmuir ; 40(1): 389-402, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117697

RESUMO

A halogen-free quaternary ammonium-based ionic liquid functionalized with benzotriazole, BTA-16-BTA, was synthesized. Its anticorrosion effects on Q235 steel were evaluated in two different acids (6 M HCl or 1 M H3PO4) by weight loss and electrochemical tests. BTA-16-BTA shows the best performance at 30 °C with the highest inhibition efficiencies of 98.84% in 6 M HCl and 96.40% in 1 M H3PO4. The adsorption behavior of BTA-16-BTA molecules on Q235 steel in HCl solution obeys the Langmuir isotherm with an adsorption energy of about -40 kJ·mol-1, which implies chemisorption. Quantum chemistry calculation indicates that the chemical adsorption originated from the injection of π-electrons from inhibitor molecules into empty 3d orbitals of Fe atoms. The tight adsorption of inhibitor molecules and associated dehydration of the steel surface promoted the corrosion inhibition in HCl solutions. In H3PO4 solutions, passivation by phosphate anions and adsorption of inhibitor molecules contributed synergistically to the excellent anticorrosion performance.

13.
Inorg Chem ; 63(23): 10603-10610, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804710

RESUMO

Exploring a novel photocatalyst for catalytic oxidation of toluene is a sustainable strategy for energy conversion in times of an energy crisis. However, designing an effective photocatalyst for the conversion of toluene remains challenging. Herein, a novel organic monophosphonate-modified high nucleus Cu-incorporated polyoxotungstate, K8H33[{Cu0.5(H2O)4}{Cu2(O3PCH2COO)(1,4,9-α-P2W15O56)}]4·Cl·60H2O (1), has been intentionally synthesized by a self-assembly process utilizing conventional aqueous method. It reveals that 1 contains a polyanion of [{Cu0.5(H2O)}4{Cu2(O3PCH2COO)(1,4,9-α-P2W15O56)}]440- composed of four Dawson-type {1,4,9-α-P2W15} subunits, forming an oval-shaped structure and further connecting into a three-dimensional (3D) framework by lateral {Cu(H2O)4}2+. Interestingly, the trivacant {1,4,9-α-P2W15} subunits were observed in the organophosphonate acid-functionalized polyoxometalates for the first time. Notably, 1 exhibits a wonderful performance in catalytic oxidation of the recalcitrant C(sp3)-H bond of toluene to benzoic acid with a conversion as high as 97% under visible light utilizing O2 as an oxidant.

14.
Inorg Chem ; 63(22): 10296-10303, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776123

RESUMO

Metal halides have drawn great interest as luminescent materials and scintillators due to their outstanding optical properties. Exploring new types of phosphors with easy production processes, excellent photophysical properties, high light yields, and environmentally friendly compositions is crucial and quite challenging. Herein, a novel Mn(II)-based metal halide (4-BTP)2MnBr4 was produced using a facile solvent evaporation method, which exhibited a strong green emission peaking at 524 nm from the d-d transition of tetrahedral-coordinated Mn2+ ion and a near-unity quantum yield. The prepared white light-emitting diode device has a wide color gamut of 100.7% NTSC with CIE chromaticity coordinates of (0.32, 0.32). In addition, (4-BTP)2MnBr4 demonstrates excellent characteristics in X-ray scintillation, including a high light yield of 98 000 photons/MeV, a sensitive detection limit of 37.4 nGy/s, excellent resistance to radiation damage, and successful demonstration of X-ray imaging with high resolution at 21.3 lp/mm, revealing the potential for application in diagnostic X-ray medical imaging and industry radiation detection.

15.
Exp Brain Res ; 242(8): 1983-1998, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38935089

RESUMO

The aim of this study was to investigate histone deacetylase 6 (HDAC6) modifies the heat shock protein 90 (HSP90) and heat shock transcription factor 1 (HSF1) affect the levels of pathological markers such as Aß oligomers (Aßo) and Tau phosphorylation (p-Tau) in APP/PS1 double transgenic mice hippocampal tissues or HT22 neurons as well as the changes in cognitive behavioral functions of mice. (1) APP/PS1 transgenic mice (6 months old, 25 ~ 30 g) were randomly assigned to 5 experimental groups, C57BL/6J mice (6 months old, 25 ~ 30 g) were used as 4 control groups, with 8 mice in each group. All mice underwent intracerebroventricular (i.c.v.) cannulation, and the experimental groups were administered with normal saline (APP + NS group), HDAC6 agonist tubastatin A hydrochloride (TSA) (APP + TSA group) or HDAC6 agonist theophylline (Theo) (APP + Theo group), HSP90 inhibitor Ganetespib (Gane) (APP + Gane group), or a combination of pre-injected Gane by TSA (APP + Gane + TSA group); the control group received i.c.v. injections of Gane (Gane group), TSA (TSA group), Theo (Theo group) or NS (NS group), respectively. (2) Mouse hippocampal neurons HT22 were randomly divided into a control group (Control) and an Aß1-42 intervention group (Aß). Within the Aß group, further divisions were made for knockdown HSP90 (Aß + siHSP90 group), overexpression HSP90 (Aß + OE-HSP90 group), knockdown HSF1(Aß + siHSF1 group) and knockdown HSF1 followed by overexpression HSP90 (Aß + siHSF1 + OE-HSP90 group), resulting in a total of 6 groups. Morris water maze test was used to evaluate the cognitive behavior of the mice. Western blot and immunohistochemistry or immunofluorescence were performed to detect the levels of HDAC6, HSP90, HSF1, Aß1-42, Tau protein, and p-Tau in the hippocampal tissue or HT22 cells. qRT-PCR was used to measure the levels of hdac6, hsp90, and hsf1 mRNA in the hippocampus or nerve cells. (1) The levels of HDAC6, Aß1-42 and p-Tau were elevated, while HSP90 and HSF1 were decreased in the hippocampal tissue of APP/PS1 transgenic mice (all P < 0.01). Inhibiting HDAC6 upregulated the expressions of HSP90 and HSF1 in the hippocampal tissue of APP/PS1 mice, while decreasing the levels of Aß1-42 and p-Tau as well as improving the spatial cognitive behavior in mice (P < 0.05 or P < 0.01). The opposite effects were observed upon HDAC6 activation. However, inhibiting HSP90 reduced the expression of HSF1 (P < 0.01) and increased the levels of Aß1-42 and p-Tau (P < 0.05 or P < 0.01) but did not significantly affect the expression of HDAC6 (P > 0.05). No significant changes were observed in the aforementioned indicators in the 4 control groups (P > 0.05). (2) In the Aß1-42 intervention group, HDAC6 and Aß1-42, p-Tau expression levels were elevated, while HSP90 and HSF1 expressions were all decreased, and cell viability was reduced (P < 0.05 or P < 0.01). Overexpression of HSP90 upregulated HSF1 expression, decreased the levels of Aß1-42 and p-Tau, and increased cell viability (P < 0.05 or P < 0.01). Knocking down HSP90 had the opposite effect; and knocking down HSF1 increased the levels of Aß1-42 and p-Tau and decreased cells viability (all P < 0.01), but did not result in significant changes in the expression levels of HSP90 (P > 0.05). Inhibiting HDAC6 can upregulate the expressions of HSP90 and HSF1 but reduce the levels of Aß1-42 and p-Tau in the hippocampus of APP/PS1 mice and improvement of cognitive behavioral function in mice; Overexpression of HSP90 can increase HSF1 but decrease Aß1-42 and p-Tau levels in the hippocampal neurons and increase cell activity. It is suggested that HDAC6 may affect the formation of Aß oligomers and the changes in Tau protein phosphorylation levels in the hippocampus of AD transgenic mouse as well as the alterations in cognitive behavioral functions by regulating the HSP90-HSF1 pathway.


Assuntos
Proteínas de Choque Térmico HSP90 , Fatores de Transcrição de Choque Térmico , Hipocampo , Desacetilase 6 de Histona , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Fatores de Transcrição de Choque Térmico/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Cognição/fisiologia , Cognição/efeitos dos fármacos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
16.
Phys Chem Chem Phys ; 26(28): 19554-19563, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979978

RESUMO

Monitoring of reactive oxygen species (ROS), such as O2˙-, etc., in organisms is of great significance, not only for their essential role in biological processes, but their excessive production may also result in many diseases. Flavin (FL) is a fluorophore that naturally exists in flavoenzymes, and its fluorescent emission (FE) becomes negligible when reduced. This enables the application of FL derivatives as fluorescent sensors for ROS. We presented a theoretical investigation to address the impact of amino substitution on the photophysical properties of aminoflavins (AmFLs). Resulting from the interplay of electronic and positional effects, amination at C8 enhances the electronic coupling between the ground state and the first singlet excited state by enlarging the adiabatic energy change of the electronic transitions and the emission transition dipole moments, weakens the vibronic coupling by decreasing the contribution of isoalloxazine to the frontier molecular orbitals, redshifts the absorption band, and enhances the fluorescent emission drastically in 8AmFL. The theoretically estimated fluorescent emission intensity of 8AmFL is ∼40 times that of FL, suggesting its potential application as a fluorescent sensor.

17.
Exp Cell Res ; 422(2): 113438, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435219

RESUMO

BACKGROUND: RFPL1S was first identified as one of the pseudogenes located in the intrachromosomal duplications within 22q12-13. Our previous study found that one of the predicted transcripts of lncRNA RFPL1S, ENST00000419368.1 (GRCh37/hg19), also named as RFPL1S-202 in Ensembl website, is significantly downregulated in the chemoresistant ovarian cancer cells. However, its function and underlying mechanism have not been studied. METHODS: Quantitative Real-time PCR was used to analyze the expression. Cell Counting Kit-8, transwell, flow cytometry analysis and tail vein injected mouse model were used to test the function. RNA-sequencing, RNA pull down, western blot, ELISA and RNA-Binding Protein Immunoprecipitation were performed for studying the mechanism. 5' and 3' rapid amplification of complementary DNA ends were performed to analyze the full length of RFPL1S-202. RESULTS: RFPL1S-202 is significantly downregulated in epithelial ovarian cancer tissues and cell lines. Gain- and loss-of-function study indicated that RFPL1S-202 could enhance cisplatin or paclitaxel in cytotoxicity, inhibit cell proliferation, invasion and migration of ovarian cancer cells in vitro, and inhibit the liver metastasis of ovarian cancer cells in vivo. Mechanistically, RFPL1S-202 could physically interact with DEAD-Box Helicase 3 X-linked (DDX3X) protein, and decrease the expression of p-STAT1 and the IFN inducible genes by increasing the m6A modification of IFNB1. RFPL1S-202 is a spliced and polyadenylated non-coding RNA with a full length of 1071 bp. CONCLUSIONS: Our study suggested that the predicted lncRNA RFPL1S-202 exerts a tumor- suppressive function in oarian cancer chemoresistance and progression by interacting with DDX3X and down-regulating the IFN-ß-STAT1 signaling pathway.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Animais , Camundongos , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Cisplatino , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
18.
Nature ; 563(7729): 131-136, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356214

RESUMO

Accurate repair of DNA double-stranded breaks by homologous recombination preserves genome integrity and inhibits tumorigenesis. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that activates innate immunity by initiating the STING-IRF3-type I IFN signalling cascade1,2. Recognition of ruptured micronuclei by cGAS links genome instability to the innate immune response3,4, but the potential involvement of cGAS in DNA repair remains unknown. Here we demonstrate that cGAS inhibits homologous recombination in mouse and human models. DNA damage induces nuclear translocation of cGAS in a manner that is dependent on importin-α, and the phosphorylation of cGAS at tyrosine 215-mediated by B-lymphoid tyrosine kinase-facilitates the cytosolic retention of cGAS. In the nucleus, cGAS is recruited to double-stranded breaks and interacts with PARP1 via poly(ADP-ribose). The cGAS-PARP1 interaction impedes the formation of the PARP1-Timeless complex, and thereby suppresses homologous recombination. We show that knockdown of cGAS suppresses DNA damage and inhibits tumour growth both in vitro and in vivo. We conclude that nuclear cGAS suppresses homologous-recombination-mediated repair and promotes tumour growth, and that cGAS therefore represents a potential target for cancer prevention and therapy.


Assuntos
Núcleo Celular/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotidiltransferases/metabolismo , Reparo de DNA por Recombinação , Transporte Ativo do Núcleo Celular , Adulto , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Nucleotidiltransferases/deficiência , Fosforilação , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica/efeitos dos fármacos , Reparo de DNA por Recombinação/genética , Quinases da Família src/metabolismo
19.
Environ Res ; 248: 118327, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286252

RESUMO

Broflanilide is a newly-developed meta-diamide insecticide, proposed for the control of a wide variety of chewing pests on many crops. In view of the proposed use of broflanilide and its environmental fate, it may be exposed to consumers and non-target organisms, which adversely affect human and the environment. In this paper, a rapid, sensitive and valid UPLC-MS/MS method was established for simultaneous analysis of broflanilide and its two major metabolites, DM-8007 and S (PFP-OH)-8007, in cauliflower. Then, the dissipation behaviors and final residues of broflanilide and its two major metabolites in cauliflower from eight sites with different climatic conditions in China were studied via the described analytical method. In addition, the acute toxicity test of 9.5 % suspension concentrate of broflanilide, broflanilide standard, DM-8007 and S (PFP-OH)-8007 were conducted to non-target terrestrial organisms. Risk assessment for human and non-target terrestrial organisms in cauliflower production was evaluated based on the maximum annual application rates and intervals. The results showed that the highest residue of broflanilide detected in cauliflower samples was all lower than the corresponding MRLs (2 mg/kg) in Japan. Chronic food dietary risk estimates for broflanilide do not exceed 50 % for all the Chinese population groups. Moreover, broflanilide is of low acute toxicity to birds and earthworm, while broflanilide and its metabolites is classified as highly toxic to adult honeybees. Acute risks of broflanilide to birds and earthworms were deemed to be acceptable in a realistic worst-case scenario, while its risk to adult honeybees and ladybug was unacceptable. A protection statement for honeybees and ladybug is required to recognize the high toxicity of broflanilide on related product labels. The study will be conducive to provide guidance for the rational application of broflanilide in cauliflower production.


Assuntos
Benzamidas , Brassica , Fluorocarbonos , Inseticidas , Resíduos de Praguicidas , Humanos , Animais , Abelhas , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Inseticidas/toxicidade , Medição de Risco
20.
BMC Vet Res ; 20(1): 141, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582846

RESUMO

Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.


Assuntos
Infecções por Haemophilus , Haemophilus parasuis , Doenças dos Suínos , Animais , Antígeno B7-H1 , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Terapia de Imunossupressão/veterinária , Fosfatidilinositol 3-Quinases , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Suínos , Doenças dos Suínos/microbiologia , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA