Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 298(7): 102078, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643317

RESUMO

Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.


Assuntos
Nitritos , Pré-Eclâmpsia , Animais , Epigênese Genética , Feminino , Humanos , Ferro/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Ratos , Ovinos
2.
J Physiol ; 598(11): 2223-2241, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118291

RESUMO

KEY POINTS: Nitric oxide (NO) is a gasotransmitter with important physiological and pathophysiological roles in pregnancy. There is limited information available about the sources and metabolism of NO and its bioactive metabolites (NOx) in both normal and complicated pregnancies. The present study characterized and quantified endogenous NOx in human and mouse placenta following determination of the stability of exogenous NOx in placental homogenates. NOx have differential stability in placental homogenates. NO and iron nitrosyl species (FeNOs), are relatively unstable in placental homogenates from normal placentas. Exogenous NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. FeNOs were also detected endogenously in mouse and human placenta. NOx levels in placental villous tissue are increased in fetal growth restriction vs. placentas from women with normal pregnancies, particularly in fetal growth restriction associated with pre-eclampsia. Villitis was not associated, however, with an increase in NOx levels in either normotensive or pre-eclamptic placentas. The results call for further investigation of FeNOs in normal and complicated pregnancies. ABSTRACT: Nitric oxide (NO) is a gasotransmitter with important roles in pregnancy under both physiological and pathophysiological conditions. Although products of NO metabolism (NOx) also have significant bioactivity, little is known about the role of NO and NOx under conditions of aberrant placental inflammation during pregnancy. An ozone-based chemiluminescence approach was used to investigate the stability and metabolic fate of NOx in human placental homogenates from uncomplicated pregnancies in healthy mothers compared to that in placental tissue from normotensive and pre-eclamptic pregnancies complicated with fetal growth restriction (FGR) with and without villitis of unknown aetiology. We hypothesized that placental NOx would be increased in FGR vs. normal tissue, and be further increased in villitis vs. non-villitis placentas. Findings indicate that nitrate, nitrite and nitrosothiols, but not NO or iron nitrosyl species (FeNOs), are relatively stable in placental homogenates from normal placentas, and that NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. Furthermore, NOx levels in placental villous tissue are increased in FGR vs. placentas from women with normal pregnancies, particularly in FGR associated with pre-eclampsia. However, in contrast to our hypothesis, villitis was not associated with an increase in NOx levels in either normotensive or pre-eclamptic placentas. Our results also strongly support the involvement of FeNOs in both mouse and human placenta, and call for their further study as a critical mechanistic link between pre-eclampsia and fetal growth restriction.


Assuntos
Óxido Nítrico , Pré-Eclâmpsia , Animais , Feminino , Retardo do Crescimento Fetal , Humanos , Inflamação , Camundongos , Placenta , Gravidez
3.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R401-R411, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32813540

RESUMO

Circulating metabolites of nitric oxide, such as nitrite, iron nitrosyls (FeNO), and nitrosothiols, have vasodilatory bioactivity. In both human and sheep neonates, plasma concentrations of these NO metabolite (NOx) concentrations fall >50% within minutes after birth, raising the possibility that circulating NOx plays a role in maintaining low fetal vascular resistance and in the cardiovascular transition at birth. To test whether the fall in plasma NOx concentrations at birth is due to either ligation of the umbilical cord or oxygenation of the fetus to newborn levels, plasma NOx concentrations were measured during stepwise delivery of near-term fetal lambs. When fetal lambs were intubated and mechanically ventilated with 100% O2 to oxygenate the arterial blood while still in utero with the umbilical circulation still intact, there was no change in plasma NOx levels. In contrast, when the umbilical cord was ligated while fetal lambs were mechanically ventilated with O2 levels that maintained fetal arterial blood gases, plasma NOx levels decreased by nearly 50%. Characterization of the individual NOx species in plasma revealed that the overall fall in NOx at birth was attributable mainly to FeNO compounds. Finally, when the typical fall in NOx after birth was prevented by intravenous nitrite infusion, birth-related changes in blood pressure, heart rate, and carotid flow changes were little affected, suggesting the cardiovascular transition at birth is not dependent on a fall in plasma NOx. In conclusion, this study shows FeNO is released from the placenta and that its decline accounts for most of the measured fall in plasma NOx at birth.


Assuntos
Sangue Fetal/metabolismo , Ferro/sangue , Nitritos/metabolismo , Óxidos de Nitrogênio/sangue , Parto/fisiologia , Placenta/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Feminino , Óxido Nítrico/metabolismo , Gravidez , Ovinos
4.
Nitric Oxide ; 95: 29-44, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870965

RESUMO

The gasotransmitters, nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are endogenously-produced volatile molecules that perform signaling functions throughout the body. In biological tissues, these small, lipid-permeable molecules exist in free gaseous form for only seconds or less, and thus they are ideal for paracrine signaling that can be controlled rapidly by changes in their rates of production or consumption. In addition, tissue concentrations of the gasotransmitters are influenced by fluctuations in the level of O2 and reactive oxygen species (ROS). The normal transition from fetus to newborn involves a several-fold increase in tissue O2 tensions and ROS, and requires rapid morphological and functional adaptations to the extrauterine environment. This review summarizes the role of gasotransmitters as it pertains to newborn physiology. Particular focus is given to the vasculature, ventilatory, and gastrointestinal systems, each of which uniquely illustrate the function of gasotransmitters in the birth transition and newborn periods. Moreover, given the relative lack of studies on the role that gasotransmitters play in the newborn, particularly that of H2S and CO, important gaps in knowledge are highlighted throughout the review.


Assuntos
Monóxido de Carbono/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Recém-Nascido/fisiologia , Óxido Nítrico/metabolismo , Animais , Humanos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
Mol Pharmacol ; 93(5): 427-437, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476040

RESUMO

Glutathione-liganded binuclear dinitrosyl iron complex (glut-BDNIC) has been proposed to be a donor of nitric oxide (NO). This study was undertaken to investigate the mechanisms of vasoactivity, systemic hemodynamic effects, and pharmacokinetics of glut-BDNIC. To test the hypothesis that glut-BDNICs vasodilate by releasing NO in its reduced [nitroxyl (HNO)] state, a bioassay method of isolated, preconstricted ovine mesenteric arterial rings was used in the presence of selective scavengers of HNO or NO free radical (NO•); the vasodilatory effects of glut-BDNIC were found to have characteristics similar to those of an HNO donor and markedly different than an NO• donor. In addition, products of the reaction of glut-BDNIC with CPTIO [2-(4-carboxyphenyl)-4,4,5-tetramethyl imidazoline-1-oxyl-3-oxide] were found to have electron paramagnetic characteristics similar to those of an HNO donor compared with an NO• donor. In contrast to S-nitroso-glutathione, which was vasodilative both in vitro and in vivo, the potency of glut-BDNIC-mediated vasodilation was markedly diminished in both rats and sheep. Wire myography showed that plasma albumin contributed to this loss of hypotensive effects, an effect abolished by modification of the cysteine-thiol residue of albumin. High doses of glut-BDNIC caused long-lasting hypotension in rats that can be at least partially attributed to its long circulating half-life of ∼44 minutes. This study suggests that glut-BDNIC is an HNO donor, and that its vasoactive effects are modulated by binding to the cysteine residue of plasma proteins, such as albumin.


Assuntos
Glutationa/metabolismo , Hemodinâmica/efeitos dos fármacos , Ferro/metabolismo , Ferro/farmacologia , Óxidos de Nitrogênio/metabolismo , Óxidos de Nitrogênio/farmacologia , Albumina Sérica/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Ferro/farmacocinética , Ligantes , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Miografia , Doadores de Óxido Nítrico/farmacologia , Óxidos de Nitrogênio/farmacocinética , Ratos , Ovinos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
6.
Nitric Oxide ; 75: 60-69, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428841

RESUMO

Nitrite and S-nitrosothiols (SNOs) are both byproducts of nitric oxide (NO) metabolism and are proposed to cause vasodilation via activation of soluble guanylate cyclase (sGC). We have previously reported that while SNOs are potent vasodilators at physiological concentrations, nitrite itself only produces vasodilation at supraphysiological concentrations. Here, we tested the hypothesis that sub-vasoactive concentrations of nitrite potentiate the vasodilatory effects of SNOs. Multiple exposures of isolated sheep arteries to S-nitroso-glutathione (GSNO) resulted in a tachyphylactic decreased vasodilatory response to GSNO but not to NO, suggesting attenuation of signaling steps upstream from sGC. Exposure of arteries to 1 µM nitrite potentiated the vasodilatory effects of GSNO in naive arteries and abrogated the tachyphylactic response to GSNO in pre-exposed arteries, suggesting that nitrite facilitates GSNO-mediated activation of sGC. In intact anesthetized sheep and rats, inhibition of NO synthases to decrease plasma nitrite levels attenuated vasodilatory responses to exogenous infusions of GSNO, an effect that was reversed by exogenous infusion of nitrite at sub-vasodilating levels. This study suggests nitrite potentiates SNO-mediated vasodilation via a mechanism that lies upstream from activation of sGC.


Assuntos
Óxido Nítrico/metabolismo , Nitritos/metabolismo , S-Nitrosotióis/metabolismo , Vasodilatadores/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/fisiologia , GMP Cíclico/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/farmacologia , Nitritos/farmacologia , Ratos , S-Nitrosoglutationa/metabolismo , S-Nitrosoglutationa/farmacologia , S-Nitrosotióis/farmacologia , Ovinos , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
7.
Nitric Oxide ; 79: 57-67, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30059767

RESUMO

Dinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification. EPR is limited, however, by its ability to detect only paramagnetic mononuclear DNICs even though EPR-silent binuclear are likely to be prevalent. Furthermore, physiological concentrations of mononuclear DNICs are usually lower than the EPR detection limit (1 µM). We have thus developed a chemiluminescence-based method for the selective detection of both DNIC forms at physiological, pathophysiological, and pharmacologic conditions. We have also demonstrated the use of the new method in detecting DNIC formation in the presence of nitrite and nitrosothiols within biological fluids and tissue. This new method, which can be used alone or in tandem with EPR, has the potential to offer insight about the involvement of DNICs in many NO-dependent pathways.


Assuntos
Ferro/análise , Luminescência , Óxidos de Nitrogênio/análise , Ozônio/química , Animais , Ovinos
8.
Nitric Oxide ; 58: 20-7, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27235767

RESUMO

S-nitrosothiols (SNOs) are metabolites of NO with potent vasodilatory activity. Our previous studies in sheep indicated that intra-arterially infused SNOs dilate the mesenteric vasculature more than the femoral vasculature. We hypothesized that the mesenteric artery is more responsive to SNO-mediated vasodilation, and investigated various steps along the NO/cGMP pathway to determine the mechanism for this difference. In anesthetized adult sheep, we monitored the conductance of mesenteric and femoral arteries during infusion of S-nitroso-l-cysteine (L-cysNO), and found mesenteric vascular conductance increased (137 ± 3%) significantly more than femoral conductance (26 ± 25%). Similar results were found in wire myography studies of isolated sheep mesenteric and femoral arteries. Vasodilation by SNOs was attenuated in both vessel types by the presence of ODQ (sGC inhibitor), and both YC-1 (sGC agonist) and 8-Br-cGMP (cGMP analog) mediated more potent relaxation in mesenteric arteries than femoral arteries. The vasodilatory difference between mesenteric and femoral arteries was eliminated by antagonists of either protein kinase G or L-type Ca(2+) channels. Western immunoblots showed a larger L-type Ca(2+)/sGC abundance ratio in mesenteric arteries than in femoral arteries. Fetal sheep mesenteric arteries were more responsive to SNOs than adult mesenteric arteries, and had a greater L-Ca(2+)/sGC ratio (p = 0.047 and r = -0.906 for correlation between Emax and L-Ca(2+)/sGC). These results suggest that mesenteric arteries, especially those in fetus, are more responsive to SNO-mediated vasodilation than femoral arteries due to a greater role of the L-type calcium channel in the NO/cGMP pathway.


Assuntos
Canais de Cálcio Tipo L/fisiologia , GMP Cíclico/fisiologia , Cisteína/análogos & derivados , Artéria Femoral/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , S-Nitrosotióis/farmacologia , Vasodilatadores/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cisteína/farmacologia , Diltiazem/farmacologia , Feminino , Artéria Femoral/fisiologia , Feto/irrigação sanguínea , Indazóis/farmacologia , Masculino , Artérias Mesentéricas/fisiologia , Nifedipino/farmacologia , Oxidiazóis/farmacologia , Quinoxalinas/farmacologia , S-Nitrosoglutationa/farmacologia , Ovinos , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação/efeitos dos fármacos
9.
J Physiol ; 592(8): 1785-94, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24535441

RESUMO

Nitrite has been postulated to provide a reservoir for conversion to nitric oxide (NO), especially in tissues with reduced oxygen levels as in the fetus. Nitrite would thus provide local vasodilatation and restore a balance between oxygen supply and need, a putative mechanism of importance especially in the brain. The current experiments test the hypothesis that exogenous nitrite acts as a vasodilator in the cephalic vasculature of the intact, near term fetal sheep. Fetuses were first instrumented to measure arterial blood pressure and carotid artery blood flow and then studied 4-5 days later while in utero without anaesthesia. Initially l-nitro-arginine (LNNA) was given to block endogenous NO production. Carotid resistance to flow increased 2-fold from 0.54 ± 0.01 (SEM) to 1.20 ± 0.08 mmHg min ml(-1) (in 13 fetuses, P < 0.001), indicating NO tonically reduces cerebral vascular tone. Sodium nitrite (or saline as control) was then infused in increasing step-doses from 0.01 to 33 µm in half-log increments over a period of 2 h. Carotid artery pressure, blood flow and vascular resistance did not change compared to fetuses receiving saline, even at plasma nitrite concentrations two orders of magnitude above the physiological range. The results indicate that while cephalic vascular tone is controlled by endogenous nitric oxide synthase activity, exogenously administered nitrite is not a vasodilator at physiological concentrations in the vasculature served by the carotid artery of fetal sheep.


Assuntos
Encéfalo/irrigação sanguínea , Artérias Carótidas/fisiologia , Feto/irrigação sanguínea , Nitritos/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Encéfalo/embriologia , Artérias Carótidas/efeitos dos fármacos , Feminino , Gravidez , Ovinos
10.
Am J Physiol Heart Circ Physiol ; 307(7): H976-86, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108012

RESUMO

Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin.


Assuntos
Músculo Liso Vascular/fisiologia , Nitritos/sangue , Vasodilatação , Animais , Citoglobina , Feminino , Artéria Femoral/citologia , Artéria Femoral/metabolismo , Artéria Femoral/fisiologia , Globinas/metabolismo , Membro Posterior/irrigação sanguínea , Hipóxia/sangue , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Músculo Liso Vascular/metabolismo , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxigênio/sangue , Ratos , Fluxo Sanguíneo Regional , Ovinos
11.
Adv Sci (Weinh) ; 11(26): e2305866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685626

RESUMO

Although the gasotransmitter hydrogen sulfide (H2S) is well known for its vasodilatory effects, H2S also exhibits vasoconstricting properties. Herein, it is demonstrated that administration of H2S as intravenous sodium sulfide (Na2S) increased blood pressure in sheep and rats, and this effect persisted after H2S has disappeared from the blood. Inhibition of the L-type calcium channel (LTCC) diminished the hypertensive effects. Incubation of Na2S with whole blood, red blood cells, methemoglobin, or oxyhemoglobin produced a hypertensive product of H2S, which is not hydrogen thioperoxide, metHb-SH- complexes, per-/poly- sulfides, or thiolsulfate, but rather a labile intermediate. One-electron oxidation of H2S by oxyhemoglobin generated its redox cousin, sulfhydryl radical (HS•). Consistent with the role of HS• as the hypertensive intermediate, scavenging HS• inhibited Na2S-induced vasoconstriction and activation of LTCCs. In conclusion, H2S causes vasoconstriction that is dependent on the activation of LTCCs and generation of HS• by oxyhemoglobin.


Assuntos
Pressão Sanguínea , Canais de Cálcio Tipo L , Sulfeto de Hidrogênio , Oxiemoglobinas , Animais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Oxiemoglobinas/metabolismo , Oxiemoglobinas/farmacologia , Ratos , Canais de Cálcio Tipo L/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Ovinos , Masculino , Hipertensão/metabolismo , Modelos Animais de Doenças , Sulfetos/farmacologia , Sulfetos/metabolismo
12.
Antioxidants (Basel) ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37759975

RESUMO

We recently developed a combination of four chemiluminescence-based assays for selective detection of different nitric oxide (NO) metabolites, including nitrite, S-nitrosothiols (SNOs), heme-nitrosyl (heme-NO), and dinitrosyl iron complexes (DNICs). However, these NO species (NOx) may be under dynamic equilibria during sample handling, which affects the final determination made from the readout of assays. Using fetal and maternal sheep from low and high altitudes (300 and 3801 m, respectively) as models of different NOx levels and compositions, we tested the hypothesis that sample handling introduces artifacts in chemiluminescence assays of NOx. Here, we demonstrate the following: (1) room temperature placement is associated with an increase and decrease in NOx in plasma and whole blood samples, respectively; (2) snap freezing and thawing lead to the interconversion of different NOx in plasma; (3) snap freezing and homogenization in liquid nitrogen eliminate a significant fraction of NOx in the aorta of stressed animals; (4) A "stop solution" commonly used to preserve nitrite and SNOs leads to the interconversion of different NOx in blood, while deproteinization results in a significant increase in detectable NOx; (5) some reagents widely used in sample pretreatments, such as mercury chloride, acid sulfanilamide, N-ethylmaleimide, ferricyanide, and anticoagulant ethylenediaminetetraacetic acid, have unintended effects that destabilize SNO, DNICs, and/or heme-NO; (6) blood, including the residual blood clot left in the washed purge vessel, quenches the signal of nitrite when using ascorbic acid and acetic acid as the purge vessel reagent; and (7) new limitations to the four chemiluminescence-based assays. This study points out the need for re-evaluation of previous chemiluminescence measurements of NOx, and calls for special attention to be paid to sample handling, as it can introduce significant artifacts into NOx assays.

13.
Circulation ; 123(6): 605-12, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282501

RESUMO

BACKGROUND: Nitrite can be converted to nitric oxide (NO) by a number of different biochemical pathways. In newborn lambs, an aerosol of inhaled nitrite has been found to reduce pulmonary blood pressure, possibly acting via conversion to NO by reaction with intraerythrocytic deoxyhemoglobin. If so, the vasodilating effects of nitrite would be attenuated by free hemoglobin in plasma that would rapidly scavenge NO. METHODS AND RESULTS: Pulmonary vascular pressures and resistances to flow were measured in anesthetized newborn lambs. Plasma hemoglobin concentrations were then elevated, resulting in marked pulmonary hypertension. This effect was attenuated if infused hemoglobin was first oxidized to methemoglobin, which does not scavenge NO. These results further implicate NO as a tonic pulmonary vasodilator. Next, while free hemoglobin continued to be infused, the lambs were given inhaled NO gas (20 ppm), inhaled sodium nitrite aerosol (0.87 mol/L), or an intravascular nitrite infusion (3 mg/h bolus, 5 mg · kg⁻¹ · h⁻¹ infusion). Inhaled NO and inhaled nitrite aerosol both resulted in pulmonary vasodilation. Intravascular infusion of nitrite, however, did not. Increases in exhaled NO gas were observed in lambs while breathing the nitrite aerosol (≈ 20 ppb NO) but not during intravascular infusion of nitrite. CONCLUSIONS: We conclude that the pulmonary vasodilating effect of inhaled nitrite results from its conversion to NO in airway and parenchymal lung tissue and is not dependent on reactions with deoxyhemoglobin in the pulmonary circulation. Inhaled nitrite aerosol remains a promising candidate to reduce pulmonary hypertension in clinical application.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico/metabolismo , Nitritos/administração & dosagem , Nitritos/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/farmacologia , Administração por Inalação , Animais , Animais Recém-Nascidos , Hemoglobinas/metabolismo , Hemólise , Pulmão/irrigação sanguínea , Circulação Pulmonar/efeitos dos fármacos , Ovinos , Vasodilatadores/metabolismo
14.
Redox Biol ; 53: 102327, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605454

RESUMO

S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as 'nitrodilators', defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.


Assuntos
Óxido Nítrico , S-Nitrosotióis , Guanilato Ciclase , Músculo Liso Vascular , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , S-Nitrosotióis/farmacologia , Guanilil Ciclase Solúvel , Vasodilatação
15.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139895

RESUMO

The mammalian fetus thrives at oxygen tensions much lower than those of adults. Gestation at high altitude superimposes hypoxic stresses on the fetus resulting in increased erythropoiesis. We hypothesized that chronic hypoxia at high altitude alters the homeostasis of iron and bioactive nitric oxide metabolites (NOx) in gestation. To test for this, electron paramagnetic resonance was used to provide unique measurements of iron, metalloproteins, and free radicals in the blood and aorta of fetal and maternal sheep from either high or low altitudes (3801 or 300 m). Using ozone-based chemiluminescence with selectivity for various NOx species, we determined the NOx levels in these samples immediately after collection. These experiments demonstrated a systemic redistribution of iron in high altitude fetuses as manifested by a decrease in both chelatable and total iron in the aorta and an increase in non-transferrin bound iron and total iron in plasma. Likewise, high altitude altered the redox status diversely in fetal blood and aorta. This study also found significant increases in blood and aortic tissue NOx in fetuses and mothers at high altitude. In addition, gradients in NOx concentrations observed between fetus and mother, umbilical artery and vein, and plasma and RBCs demonstrated complex dynamic homeostasis of NOx among these circulatory compartments, such as placental generation and efflux as well as fetal consumption of iron-nitrosyls in RBCs, probably HbNO. In conclusion, these results may suggest the utilization of iron from non-hematopoietic tissues iron for erythropoiesis in the fetus and increased NO bioavailability in response to chronic hypoxic stress at high altitude during gestation.

16.
PLoS One ; 17(5): e0268282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544542

RESUMO

BACKGROUND: There is evidence from various models of hypoxic-ischemic injury (HII) that nitric oxide (NO) is protective. We hypothesized that either inhaled NO (iNO) or nitrite would alleviate brain injury in neonatal HII via modulation of mitochondrial function. METHODS: We tested the effects of iNO and nitrite on the Rice-Vannucci model of HII in 7-day-old rats. Brain mitochondria were isolated for flow cytometry, aconitase activity, electron paramagnetic resonance, and Seahorse assays. RESULTS: Pretreatment of pups with iNO decreased survival in the Rice-Vannucci model of HII, while iNO administered post-insult did not. MRI analysis demonstrated that pre-HII iNO at 40 ppm and post-HII iNO at 20 ppm decreased the brain lesion sizes from 6.3±1.3% to 1.0±0.4% and 1.8±0.8%, respectively. Intraperitoneal nitrite at 0.165 µg/g improved neurobehavioral performance but was harmful at higher doses and had no effect on brain infarct size. NO reacted with complex IV at the heme a3 site, decreased the oxidative stress of mitochondria challenged with anoxia and reoxygenation, and suppressed mitochondrial oxygen respiration. CONCLUSIONS: This study suggests that iNO administered following neonatal HII may be neuroprotective, possibly via its modulation of mitochondrial function.


Assuntos
Óxido Nítrico , Nitritos , Administração por Inalação , Animais , Animais Recém-Nascidos , Hipóxia , Ratos
17.
Free Radic Biol Med ; 160: 458-470, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32828952

RESUMO

Deferoxamine (DFO), an iron chelator, is used therapeutically for the removal of excess iron in multiple clinical conditions such as beta thalassemia and intracerebral hemorrhage. DFO is also used as an iron chelator and hypoxia-mimetic agent in in vivo and in vitro basic research. Here we unexpectedly discover DFO to be a nitric oxide (NO) precursor in experiments where it was intended to act as an iron chelator. Production of NO from aqueous solutions of DFO was directly observed by ozone-based chemiluminescence using a ferricyanide-based assay and was confirmed by electron paramagnetic resonance (EPR). DFO also produced NO following exposure to ultraviolet light, and its incubation with sheep adult and fetal blood resulted in considerable formation of iron nitrosyl hemoglobin, as confirmed by both visible spectroscopy and EPR. These results suggest that experiments using DFO can be confounded by concomitant production of NO, and offer new insight into some of DFO's unexplained clinical side effects such as hypotension.


Assuntos
Desferroxamina , Quelantes de Ferro , Animais , Ferricianetos , Óxido Nítrico , Ovinos , Raios Ultravioleta
18.
Free Radic Biol Med ; 154: 84-94, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376456

RESUMO

Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.


Assuntos
Oxidantes , Oxigênio , Temperatura Baixa , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Espécies Reativas de Oxigênio , Marcadores de Spin
19.
Biomed Chromatogr ; 23(7): 754-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19296520

RESUMO

A simple, specific and sensitive HPLC method with UV detection was developed and validated for the determination of tectoridin in rat plasma for the first time. Chromatographic separation was performed on a Welchrom C(18) column (150 x 4.6 mm, i.d., 5 microm) at a flow rate of 1.0 mL min(-1), using a mixture of methanol-2% HAc aqueous solution (31:69, v/v) as the mobile phase with UV detection at 266 nm. The calibration curves for tectoridin were linear over the concentration range of 1.10-274.40 microg mL(-1) in rat plasma. The intra- and inter-day accuracies (RE) were within -3.23% and 4.11%. The intra- and inter-day precisions (RSD) were not more than 2.74 and 4.72%, respectively. The present method was successfully applied to the pharmacokinetic studies of tectoridin in rats after intravenous administration of three different doses.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Isoflavonas/sangue , Animais , Área Sob a Curva , Estabilidade de Medicamentos , Isoflavonas/farmacocinética , Análise dos Mínimos Quadrados , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Redox Biol ; 26: 101238, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31200239

RESUMO

L-NG-Nitro arginine methyl ester (L-NAME) has been widely applied for several decades in both basic and clinical research as an antagonist of nitric oxide synthase (NOS). Herein, we show that L-NAME slowly releases NO from its guanidino nitro group. Daily pretreatment of rats with L-NAME potentiated mesenteric vasodilation induced by nitrodilators such as nitroglycerin, but not by NO. Release of NO also occurred with the NOS-inactive enantiomer D-NAME, but not with L-arginine or another NOS inhibitor L-NMMA, consistent with the presence or absence of a nitro group in their structure and their nitrodilator-potentiating effects. Metabolic conversion of the nitro group to NO-related breakdown products was confirmed using isotopically-labeled L-NAME. Consistent with Fenton chemistry, transition metals and reactive oxygen species accelerated the release of NO from L-NAME. Both NO production from L-NAME and its nitrodilator-potentiating effects were augmented under inflammation. NO release by L-NAME can confound its intended NOS-inhibiting effects, possibly by contributing to a putative intracellular NO store in the vasculature.


Assuntos
Inibidores Enzimáticos/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Nitroglicerina/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Arginina/farmacologia , Feminino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Miografia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Ovinos , Estereoisomerismo , Vasodilatação/fisiologia , ômega-N-Metilarginina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA