Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chemphyschem ; 25(12): e202400105, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38721760

RESUMO

Pentazole is regarded as a unique inorganic molecule that possess organic heterocyclic structure. Therefore, the research on pentazolyl derivatives represents a cutting-edge direction in both contemporary inorganic chemistry and heterocyclic chemistry. Moreover, their synthesis is regarded as the most significant research topic in the field of energetic materials due to the great potential of pentazolyl derivatives to breakthrough the energy bottleneck of CHNO-based energetic materials. However, synthesizing pentazolyl derivatives is challenging. To provide a theoretical support for the synthesis, we conducted theoretical studies on six single-ring pentazolyl derivatives with different functional groups. The results suggest that derivatization reduces the bond strength and weakens the aromaticity of the pentazolate ring. Further analysis showed that derivatization mainly affects the π aromaticity of the pentazolate ring, and ultimately causing poor stability of the pentazolyl derivatives. Among the six derivatives investigated in this study, fluoro pentazole (cyclo-N5-F) and hydroxyl pentazole (cyclo-N5-OH) possess good aromaticity, which is similar to the reported cyclo-N5-NCHN(CH3)2. Further calculations show that the kinetic stability of cyclo-N5-OH is higher than that of cyclo-N5-F. These results collectively indicate that cyclo-N5-OH is a promising candidate for synthesizing single-ring pentazolyl derivatives.

2.
Inorg Chem ; 63(29): 13166-13170, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38973778

RESUMO

Pentazole (cyclo-HN5) is a unique heterocycle categorized as both an organic and inorganic compound. However, attempts to synthesize and characterize cyclo-HN5 have been unsuccessful thus far. In this study, we synthesized a cyclo-HN5 solution and investigated the spectra, structure, aromaticity, acidity, and stability of cyclo-HN5. The lone pair of electrons on the protonated N atom of cyclo-HN5 participates in π-electron delocalization, forming two N═N bonds. Further investigations suggest that cyclo-HN5 exhibits significantly decreased π aromaticity and slightly lower σ aromaticity than cyclo-N5-. Experimental results suggest that pure cyclo-HN5 is unstable at ambient temperatures and pressures, but it can be isolated at high pressures or stabilized in solution by abundant hydrogen bonds. The pKa of cyclo-HN5 was determined as 1.63 (H2O, 25 °C) via potentiometric titration, indicating that cyclo-HN5 is a medium-strong acid. This study reveals the fundamental structure and properties of cyclo-HN5, thereby providing important data for advancing cyclo-HN5 chemistry.

3.
Med Sci Monit ; 30: e943784, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594896

RESUMO

BACKGROUND We compared the effect of remimazolam and propofol intravenous anesthesia on postoperative delirium in elderly patients undergoing laparoscopic radical resection of colon cancer. MATERIAL AND METHODS One hundred patients undergoing elective radical operation of colon cancer under general anesthesia were divided into a remimazolam group (group R) and propofol group (group P) by a random number table method. During anesthesia induction and maintenance, group R was intravenously injected with remimazolam to exert sedation; however, in group P, propofol was injected instead of remimazolam. The occurrence of postoperative delirium was assessed with the Confusion Assessment Method for the Intensive Care Unit scale and postoperative pain was assessed with the visual analogue score (VAS). The primary outcome measures were the incidence and duration of delirium within 7 days following surgery. Secondary outcome measures included postoperative VAS scores, intraoperative anesthetic drug dosage, and adverse reactions, including nausea and vomiting, hypoxemia, and respiratory depression. RESULTS There was no significant difference in baseline data between the 2 groups (P>0.05). There was no statistically significant difference in the incidence and duration of postoperative delirium between the 2 groups (P>0.05). There were no significant differences in VAS scores, remifentanil consumption, and adverse reactions, including nausea and vomiting, hypoxemia, and respiratory depression between the 2 groups (P>0.05). CONCLUSIONS In elderly patients undergoing radical colon cancer surgery, remimazolam administration did not improve or aggravate the incidence and duration of delirium, compared with propofol.


Assuntos
Benzodiazepinas , Neoplasias do Colo , Delírio , Delírio do Despertar , Propofol , Insuficiência Respiratória , Humanos , Idoso , Delírio do Despertar/induzido quimicamente , Estudos Prospectivos , Delírio/etiologia , Delírio/tratamento farmacológico , Vômito/induzido quimicamente , Neoplasias do Colo/cirurgia , Neoplasias do Colo/tratamento farmacológico , Náusea/induzido quimicamente , Hipóxia/tratamento farmacológico
4.
J Am Chem Soc ; 145(35): 19405-19420, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37623926

RESUMO

Alkene ozonolysis generates short-lived Criegee intermediates that are a significant source of hydroxyl (OH) radicals. This study demonstrates that roaming of the separating OH radicals can yield alternate hydroxycarbonyl products, thereby reducing the OH yield. Specifically, hydroxybutanone has been detected as a stable product arising from roaming in the unimolecular decay of the methyl-ethyl-substituted Criegee intermediate (MECI) under thermal flow cell conditions. The dynamical features of this novel multistage dissociation plus a roaming unimolecular decay process have also been examined with ab initio kinetics calculations. Experimentally, hydroxybutanone isomers are distinguished from the isomeric MECI by their higher ionization threshold and distinctive photoionization spectra. Moreover, the exponential rise of the hydroxybutanone kinetic time profile matches that for the unimolecular decay of MECI. A weaker methyl vinyl ketone (MVK) photoionization signal is also attributed to OH roaming. Complementary multireference electronic structure calculations have been utilized to map the unimolecular decay pathways for MECI, starting with 1,4 H atom transfer from a methyl or methylene group to the terminal oxygen, followed by roaming of the separating OH and butanonyl radicals in the long-range region of the potential. Roaming via reorientation and the addition of OH to the vinyl group of butanonyl is shown to yield hydroxybutanone, and subsequent C-O elongation and H-transfer can lead to MVK. A comprehensive theoretical kinetic analysis has been conducted to evaluate rate constants and branching yields (ca. 10-11%) for thermal unimolecular decay of MECI to conventional and roaming products under laboratory and atmospheric conditions, consistent with the estimated experimental yield (ca. 7%).

5.
Phys Chem Chem Phys ; 25(10): 7453-7465, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848133

RESUMO

The photodissociation dynamics of the dimethyl-substituted acetone oxide Criegee intermediate [(CH3)2COO] is characterized following electronic excitation to the bright 1ππ* state, which leads to O (1D) + acetone [(CH3)2CO, S0] products. The UV action spectrum of (CH3)2COO recorded with O (1D) detection under jet-cooled conditions is broad, unstructured, and essentially unchanged from the corresponding electronic absorption spectrum obtained using a UV-induced depletion method. This indicates that UV excitation of (CH3)2COO leads predominantly to the O (1D) product channel. A higher energy O (3P) + (CH3)2CO (T1) product channel is not observed, although it is energetically accessible. In addition, complementary MS-CASPT2 trajectory surface-hopping (TSH) simulations indicate minimal population leading to the O (3P) channel and non-unity overall probability for dissociation (within 100 fs). Velocity map imaging of the O (1D) products is utilized to reveal the total kinetic energy release (TKER) distribution upon photodissociation of (CH3)2COO at various UV excitation energies. Simulation of the TKER distributions is performed using a hybrid model that combines an impulsive model with a statistical component, the latter reflecting the longer-lived (>100 fs) trajectories identified in the TSH calculations. The impulsive model accounts for vibrational activation of (CH3)2CO arising from geometrical changes between the Criegee intermediate and the carbonyl product, indicating the importance of CO stretch, CCO bend, and CC stretch along with activation of hindered rotation and rock of the methyl groups in the (CH3)2CO product. Detailed comparison is also made with the TKER distribution arising from photodissociation dynamics of CH2OO upon UV excitation.

6.
J Phys Chem A ; 127(51): 10817-10827, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38109698

RESUMO

Alkene ozonolysis generates transient carbonyl oxide species, known as Criegee intermediates, which are a significant nonphotolytic source of OH radicals in the troposphere. This study demonstrates that unimolecular decay of syn-methyl-substituted Criegee intermediates proceeds via 1,4 H atom transfer to vinyl hydroperoxides, resulting in OH fission to O-O products or, alternatively, OH roaming to hydroxycarbonyl products. Newly generated Criegee intermediates are shown to yield hydroxycarbonyls with sufficient internal excitation to dissociate via C-C fission to acyl and hydroxymethyl (CH2OH) radicals. The stabilized Criegee intermediates and unimolecular products are rapidly cooled in a pulsed supersonic expansion for photoionization detection with time-of-flight mass spectrometry. CH2OH products are identified by 2 + 1 resonance-enhanced multiphoton ionization via the 3pz Rydberg state upon unimolecular decay of CH3CHOO, (CH3)2COO, (CH3)(CH3CH2)COO, and (CH3)(CH2═CH)COO (methyl vinyl ketone oxide). The stabilized Criegee intermediates are separately detected using 10.5 eV photoionization. This study provides the first experimental evidence of roaming in the unimolecular decay of isoprene-derived methyl vinyl ketone oxide and extends earlier studies that reported stabilized hydroxycarbonyl products.

7.
J Phys Chem A ; 127(1): 203-215, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574960

RESUMO

The 2-butenal oxide Criegee intermediate [(CH3CH═CH)CHOO], an isomer of the four-carbon unsaturated Criegee intermediates derived from isoprene ozonolysis, is characterized on its first π* ← π electronic transition and by the resultant dissociation dynamics to O (1D) + 2-butenal [(CH3CH═CH)CHO] products. The electronic spectrum of 2-butenal oxide under jet-cooled conditions is observed to be broad and unstructured with peak absorption at 373 nm, spanning to half maxima at 320 and 420 nm, and in good accord with the computed vertical excitation energies and absorption spectra obtained for its lowest energy conformers. The distribution of total kinetic energy released to products is ascertained through velocity map imaging of the O (1D) products. About half of the available energy, deduced from the theoretically computed asymptotic energy, is accommodated as internal excitation of the 2-butenal fragment. A reduced impulsive model is introduced to interpret the photodissociation dynamics, which accounts for the geometric changes between 2-butenal oxide and the 2-butenal fragment, and vibrational activation of associated modes in the 2-butenal product. Application of the reduced impulsive model to the photodissociation of isomeric methyl vinyl ketone oxide reveals greater internal activation of the methyl vinyl ketone product arising from methyl internal rotation and rock, which is distinctly different from the dissociation dynamics of 2-butenal oxide or methacrolein oxide.


Assuntos
Óxidos , Análise Espectral
8.
J Phys Chem A ; 127(43): 8994-9002, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870411

RESUMO

Methyl-ethyl-substituted Criegee intermediate (MECI) is a four-carbon carbonyl oxide that is formed in the ozonolysis of some asymmetric alkenes. MECI is structurally similar to the isoprene-derived methyl vinyl ketone oxide (MVK-oxide) but lacks resonance stabilization, making it a promising candidate to help us unravel the effects of size, structure, and resonance stabilization that influence the reactivity of atmospherically important, highly functionalized Criegee intermediates. We present experimental and theoretical results from the first bimolecular study of MECI in its reaction with SO2, a reaction that shows significant sensitivity to the Criegee intermediate structure. Using multiplexed photoionization mass spectrometry, we obtain a rate coefficient of (1.3 ± 0.3) × 10-10 cm3 s-1 (95% confidence limits, 298 K, 10 Torr) and demonstrate the formation of SO3 under our experimental conditions. Through high-level theory, we explore the effect of Criegee intermediate structure on the minimum energy pathways for their reactions with SO2 and obtain modified Arrhenius fits to our predictions for the reaction of both syn and anti conformers of MECI with SO2 (ksyn = 4.42 × 1011 T-7.80exp(-1401/T) cm3 s-1 and kanti = 1.26 × 1011 T-7.55exp(-1397/T) cm3 s-1). Our experimental and theoretical rate coefficients (which are in reasonable agreement at 298 K) show that the reaction of MECI with SO2 is significantly faster than MVK-oxide + SO2, demonstrating the substantial effect of resonance stabilization on Criegee intermediate reactivity.

9.
J Phys Chem A ; 126(38): 6734-6741, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36108247

RESUMO

Atmospheric ozonolysis of biogenic and anthropogenic alkenes generates zwitterionic carbonyl oxide intermediates (R1R2C═O+O-), known as Criegee intermediates, with different structural motifs and conformations. This study reports a systematic laboratory study of substituent effects on the electronic spectroscopy of four-carbon Criegee intermediates (CIs) with methyl-ethyl (MECI) and isopropyl (IPCI) groups, which are isomers produced in ozonolysis of asymmetric branched alkenes. The four-carbon CIs are separately generated by an alternative synthetic route, and spectroscopically characterized on the strong π* ← π transition associated with the carbonyl oxide group in a pulsed supersonic expansion with VUV photoionization at 118 nm and UV-induced depletion of the m/z 88 signal. The resultant broad and unstructured UV spectral features for MECI and IPCI are peaked at ca. 320 and 330 nm, respectively, with large absorption cross-sections of ca. 10-17 cm2. Comparisons are made with the four-carbon CIs formed in isoprene ozonolysis, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide), which have the same backbone connectivity as MECI and IPCI but have extended conjugation across the vinyl and carbonyl groups. A remarkable 50 nm shift of the peak absorption to longer wavelength is observed for MVK-oxide and MACR-oxide compared to MECI and IPCI, respectively. Vertical excitation energies computed theoretically agree well with the experimental findings, confirming that the spectral shifts are caused by the extended π conjugation in the isoprene-derived Criegee intermediates.


Assuntos
Carbono , Ozônio , Acroleína/análogos & derivados , Alcenos/química , Butadienos , Butanonas , Eletrônica , Hemiterpenos , Óxidos , Ozônio/química , Análise Espectral
10.
Med Sci Monit ; 28: e934281, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35283476

RESUMO

BACKGROUND Postoperative delirium (POD) seriously affects the rapid postoperative recovery of elderly patients. We investigated the effect of abdominal wall blocks on POD in elderly patients undergoing laparoscopic radical resection of colon cancer and underlying mechanisms. MATERIAL AND METHODS A total of 100 patients undergoing laparoscopic radical resection of colon cancer were randomly assigned to group C (control) and group R (regional nerve blocks). In group R, 20 mL of local anesthesia-mixed solution was injected into the bilateral transverse abdominis muscle plane and 10 mL was injected into the bilateral posterior sheath of the rectus abdominis muscle. In group C, the same amount of saline was used for nerve block. The consumption of propofol and remifentanil during surgery was recorded. Levels of serum interleukin (IL)-6 and highly sensitive C-reactive protein (hs-CRP) during surgery were evaluated. The Confusion Assessment Method for the Intensive Care Unit Scale and the Richmond Agitation-Sedation Scale were adopted to evaluate POD. RESULTS The incidence of POD was lower in group R than in group C (P=0.048). The consumption of propofol and remifentanil was significantly reduced in group R, compared with group C (P<0.05). Compared with T0, serum IL-6 and hs-CRP levels in both groups were significantly increased at T1 and T2 (P<0.05). Moreover, serum IL-6 and hs-CRP were lower at T1 and T2 in group R compared with group C (P<0.05). CONCLUSIONS Abdominal wall blocks may alleviate POD in elderly patients undergoing laparoscopic surgery, which may be related to the reduction of anesthetic consumption and inflammatory response.


Assuntos
Delírio/prevenção & controle , Laparoscopia/efeitos adversos , Bloqueio Nervoso/métodos , Complicações Pós-Operatórias/prevenção & controle , Reto do Abdome/inervação , Idoso , Neoplasias do Colo/cirurgia , Delírio/etiologia , Feminino , Seguimentos , Humanos , Masculino , Estudos Retrospectivos
11.
J Phys Chem A ; 125(30): 6571-6579, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34314179

RESUMO

UV excitation of the CH2OO Criegee intermediate across most of the broad span of the (B 1A')-(X 1A') spectrum results in prompt dissociation to two energetically accessible asymptotes: O (1D) + H2CO (X 1A1) and O (3P) + H2CO (a 3A''). Dissociation proceeds on multiple singlet potential energy surfaces that are coupled by two regions of conical intersection (CoIn). Velocity map imaging (VMI) studies reveal a bimodal total kinetic energy release (TKER) distribution for the O (1D) + H2CO (X 1A1) products with the major and minor components accounting for ca. 40% and ca. 20% on average of the available energy (Eavl), respectively. The unexpected low TKER component corresponds to highly internally excited H2CO (X 1A1) products accommodating ca. 80% of Eavl. Full dimensional trajectory calculations suggest that the bimodal TKER distribution of the O (1D) + H2CO (X 1A1) products originates from two different dynamical pathways: a primary pathway (69%) evolving through one CoIn region to products and a smaller component (20%) sampling both CoIn regions enroute to products. Those that access both CoIn regions likely give rise to the more highly internally excited H2CO (X 1A1) products. The remaining trajectories (11%) dissociate to O (3P) + H2CO (a 3A'') products after traversing through both CoIn regions. The complementary experimental and theoretical investigation provides insight on the photodissociation of CH2OO via multiple dissociation pathways through two regions of CoIn that control the branching and energy distributions of products.

12.
J Chem Phys ; 155(17): 174305, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742186

RESUMO

The electronic spectrum of methyl vinyl ketone oxide (MVK-oxide), a four-carbon Criegee intermediate derived from isoprene ozonolysis, is examined on its second π* ← π transition, involving primarily the vinyl group, at UV wavelengths (λ) below 300 nm. A broad and unstructured spectrum is obtained by a UV-induced ground state depletion method with photoionization detection on the parent mass (m/z 86). Electronic excitation of MVK-oxide results in dissociation to O (1D) products that are characterized using velocity map imaging. Electronic excitation of MVK-oxide on the first π* ← π transition associated primarily with the carbonyl oxide group at λ > 300 nm results in a prompt dissociation and yields broad total kinetic energy release (TKER) and anisotropic angular distributions for the O (1D) + methyl vinyl ketone products. By contrast, electronic excitation at λ ≤ 300 nm results in bimodal TKER and angular distributions, indicating two distinct dissociation pathways to O (1D) products. One pathway is analogous to that at λ > 300 nm, while the second pathway results in very low TKER and isotropic angular distributions indicative of internal conversion to the ground electronic state and statistical unimolecular dissociation.

14.
Chemistry ; 24(40): 10201-10207, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29756239

RESUMO

The design and synthesis of new hypergolic ionic liquids (HILs) as replacements for toxic hydrazine derivatives have been the focus of current academic research in the field of liquid bipropellant fuels. In most cases, however, the requirements of excellent ignition performances, good hydrolytic stabilities, and low synthetic costs are often contradictory, which makes the development of high-performance HILs an enormous challenge. Here, we show how a fuel-rich boranophosphate ion was rationally designed and used to synthesize a series of high-performance HILs with excellent comprehensive properties. In the design strategy, we introduced the {BH3 } moiety into the boranophosphate ion for improving the self-ignition property, whereas the complexation of boron and phosphite was used to improve the hydrolytic activity of the borohydride species. As a result, these boranophosphate HILs exhibited wide liquid operating ranges (>220 °C), high densities (1.00-1.10 g cm-3 ), good hydrolytic stabilities, and short ignition delay times (2.3-9.7 milliseconds) with white fuming nitric acid (WFNA) as the oxidizer. More importantly, these boranophosphate HILs could be readily prepared in high yields from commercial phosphite esters, avoiding complex and time-consuming synthetic routes. This work offers an effective strategy of designing boranophosphate HILs towards safer and greener hypergolic fuels for liquid bipropellant applications.

15.
Chemistry ; 23(51): 12502-12509, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28580584

RESUMO

Hypergolic ionic liquids (HILs) as potential replacements for hydrazine derivatives have attracted increasing interest over the last decade. Previous studies on HILs have mostly concentrated on the anionic innovations of ionic liquids to shorten the ignition delay (ID) time, but little attention has been paid to cationic modifications and their structure-property relationships. In this work, we present a new strategy of cationic functionalization by introducing the energetic nitrato group into the cationic units of HILs. Interestingly, the introduction of oxygen-rich nitrato groups into the cationic structure significantly improved the combustion performance of HILs with larger flame diameters and duration times. The density-specific impulse (ρIsp ) of these novel HILs are all above 279.0 s g cm-3 , much higher than that of UDMH (215.7 s g cm-3 ). In addition, the densities of these HILs are in the range of 1.22-1.39 g cm-3 , which is much higher than that of UDMH (0.79 g cm-3 ), showing their higher loading capacity than hydrazine-derived fuels in a propellant tank. This promising strategy of introducing nitrato groups into the cationic structures has provided a new platform for developing high-performing HILs with improved combustion properties.

16.
Chemistry ; 23(30): 7264-7271, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28233355

RESUMO

As an excellent n-type semiconductor, indium oxide (In2 O3 ) is also a good candidate for photocatalysis such as light-induced water splitting. However, the efficiency of the oxygen evolution reaction (OER) underperforms in view of the wide band gap (BG) and fast charge recombination in In2 O3 . N-doping provides a sound method to narrow the BG and to prohibit the charge recombination by forming new energy levels between the valence band (VB) and the conduction band (CB). In this work, an In-based organic framework sod-ZMOF was used as a precursor to prepare the N-doped In2 O3 . After calcination, sod-ZMOF is transformed into N-doped In2 O3 nanocrystalline, in which the ligand within sod-ZMOF serves as the nitrogen source. In addition, sod-ZMOF acts as self-template during calcination to generate abundant nanopores within the In2 O3 frameworks, providing large specific surface area and active sites for OER. The BG is narrowed to 2.9 from 3.7 eV of the pure In2 O3 on account of the N-doping. N species are doped in both the substitutional and interstitial fashion, and the interstitial doping is believed to improve the photo-induced carrier separation by the formation of oxygen vacancies. As a consequence, the overpotential for OER is effectively decreased from the pure In2 O3 , and the electrocatalytic experiment proves superior catalytic activity with a high current density and long-term durability compared to the In2 O3 nanoparticles obtained from In(OH)3 .

17.
Chemistry ; 22(29): 10187-93, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27270594

RESUMO

Currently, toxic and volatile hydrazine derivatives are still the main fuel choices for liquid bipropellants, especially in some traditional rocket propulsion systems. Therefore, the search for safer hypergolic fuels as replacements for hydrazine derivatives has been one of the most challenging tasks. In this study, six imidazolylidene-borane compounds with zwitterionic structure have been synthesized and characterized, and their hypergolic reactivity has been studied. As expected, these compounds exhibited fast spontaneous combustion upon contact with white fuming nitric acid (WFNA). Among them, compound 5 showed excellent integrated properties including wide liquid operating range (-70-160 °C), superior loading density (0.99 g cm(-3) ), ultrafast ignition delay times with WFNA (15 ms), and high specific impulse (303.5 s), suggesting promising application potential as safer hypergolic fuels in liquid bipropellant formulations.

18.
Adv Mater ; 36(15): e2312278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266185

RESUMO

There is a long-standing conflict between the large stretchability and high sensitivity for strain sensors, a strategy of decoupling the mechanical/electrical module by constructing the hierarchical conductor has been developed in this study. The hierarchical conductor, consisting of a mechanically stretchable layer, a conductive network layer, and a strongly bonded interface, can be produced in a simple one-step process with the aid of soft-hard Janus nanoparticles (JNPs). The introduction of JNPs in the stretchable layer can evenly distribute stress and dissipate energy due to forming the rigid-flexible homogeneous networks. Specifically, JNPs can drive graphene nanosheets (GNS) to fold or curl, creating the unique JNPs-GNS building block that can further construct the conductive network. Due to its excellent deformability to hinder crack propagation, the flexible conductive network could be stretched continuously and the local conductive pathways could be reconstructed. Consequently, the hierarchical conductor could detect both subtle strain of 0-2% and large strain of up to 370%, with a gauge factor (GF) from 66.37 to 971.70, demonstrating outstanding stretchability and sensitivity. And it also owns large tensile strength (5.28 MPa) and high deformation stability. This hierarchical design will give graphene-based sensors a major boost in emerging applications.

19.
Biomimetics (Basel) ; 8(6)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887622

RESUMO

Robot arm motion control is a fundamental aspect of robot capabilities, with arm reaching ability serving as the foundation for complex arm manipulation tasks. However, traditional inverse kinematics-based methods for robot arm reaching struggle to cope with the increasing complexity and diversity of robot environments, as they heavily rely on the accuracy of physical models. In this paper, we introduce an innovative approach to robot arm motion control, inspired by the cognitive mechanism of inner rehearsal observed in humans. The core concept revolves around the robot's ability to predict or evaluate the outcomes of motion commands before execution. This approach enhances the learning efficiency of models and reduces the mechanical wear on robots caused by excessive physical executions. We conduct experiments using the Baxter robot in simulation and the humanoid robot PKU-HR6.0 II in a real environment to demonstrate the effectiveness and efficiency of our proposed approach for robot arm reaching across different platforms. The internal models converge quickly and the average error distance between the target and the end-effector on the two platforms is reduced by 80% and 38%, respectively.

20.
Chem Sci ; 14(38): 10471-10477, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37800006

RESUMO

Biogenic alkenes, such as isoprene and α-pinene, are the predominant source of volatile organic compounds (VOCs) emitted into the atmosphere. Atmospheric processing of alkenes via reaction with ozone leads to formation of zwitterionic reactive intermediates with a carbonyl oxide functional group, known as Criegee intermediates (CIs). CIs are known to exhibit a strong absorption (π* ← π) in the near ultraviolet and visible (UV-vis) region due to the carbonyl oxide moiety. This study focuses on the laboratory identification of a five-carbon CI with an unsaturated substituent, 3-penten-2-one oxide, which can be produced upon atmospheric ozonolysis of substituted isoprenes. 3-Penten-2-one oxide is generated in the laboratory by photolysis of a newly synthesized precursor, (Z)-2,4-diiodopent-2-ene, in the presence of oxygen. The electronic spectrum of 3-penten-2-one oxide was recorded by UV-vis induced depletion of the VUV photoionization signal on the parent m/z 100 mass channel using a time-of-flight mass spectrometer. The resultant electronic spectrum is broad and unstructured with peak absorption at ca. 375 nm. To complement the experimental findings, electronic structure calculations are performed at the CASPT2(12,10)/aug-cc-pVDZ level of theory. The experimental spectrum shows good agreement with the calculated electronic spectrum and vertical excitation energy obtained for the lowest energy conformer of 3-penten-2-one oxide. In addition, OH radical products resulting from unimolecular decay of energized 3-penten-2-oxide CIs are detected by UV laser-induced fluorescence. Finally, the experimental electronic spectrum is compared with that of a four-carbon, isoprene-derived CI, methyl vinyl ketone oxide, to understand the effects of an additional methyl group on the associated electronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA