RESUMO
Photoresponsive ruthenium(II) complexes have recently emerged as a promising tool for synergistic photodynamic therapy and chemotherapy in oncology, as well as for antimicrobial applications. However, the limited penetration power of photons prevents the treatment of deep-seated lesions. In this study, we introduce a sonoresponsive ruthenium complex capable of generating superoxide anion (O2â¢-) via type I process and initiating a ligand fracture process upon ultrasound triggering. Attaching hydroxyflavone (HF) as an "electron reservoir" to the octahedral-polypyridyl-ruthenium complex resulted in decreased highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps and triplet-state metal to ligand charge transfer (3MLCT) state energy (0.89 eV). This modification enhanced the generation of O2â¢- under therapeutic ultrasound irradiation at a frequency of 1 MHz. The produced O2â¢- rapidly induced an intramolecular cascade reaction and HF ligand fracture. As a proof-of-concept, we engineered the Ru complex into a metallopolymer platform (PolyRuHF), which could be activated by low-power ultrasound (1.5 W cm-2, 1.0 MHz, 50% duty cycle) within a centimeter range of tissue. This activation led to O2â¢- generation and the release of cytotoxic ruthenium complexes. Consequently, PolyRuHF induced cellular apoptosis and ferroptosis by causing mitochondrial dysfunction and excessive toxic lipid peroxidation. Furthermore, PolyRuHF effectively inhibited subcutaneous and orthotopic breast tumors and prevented lung metastasis by downregulating metastasis-related proteins in mice. This study introduces the first sonoresponsive ruthenium complex for sonodynamic therapy/sonoactivated chemotherapy, offering new avenues for deep tumor treatment.
Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Superóxidos , Superóxidos/metabolismo , Superóxidos/química , Rutênio/química , Rutênio/farmacologia , Animais , Camundongos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Ligantes , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Humanos , Linhagem Celular Tumoral , Feminino , Apoptose/efeitos dos fármacosRESUMO
This review rigorously assesses the burgeoning research into the role of polyphenols in modulating mitophagy, an essential cellular mechanism for the targeted removal of impaired mitochondria. These natural compounds, known for their low toxicity, are underscored for their potential in therapeutic strategies against a diverse array of diseases, such as neurodegenerative, cardiovascular, and musculoskeletal disorders. The analysis penetrates deeply into the molecular mechanisms whereby polyphenols promote mitophagy, particularly by influencing crucial signaling pathways and transcriptional regulators, including the phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/parkin and forkhead box O3 (FOXO3a) pathways. Noteworthy discoveries include the neuroprotective properties of resveratrol and curcumin, which affect both autophagic pathways and mitochondrial dynamics, and the pioneering integration of polyphenols with other natural substances to amplify therapeutic effectiveness. Furthermore, the review confronts the issue of polyphenol bioavailability and emphasizes the imperative for clinical trials to corroborate their therapeutic viability. By delivering an exhaustive synthesis of contemporary insights and recent advancements in polyphenol and mitophagy research, this review endeavors to catalyze additional research and foster the creation of innovative therapeutic modalities that exploit the distinctive attributes of polyphenols to manage and prevent disease.
Assuntos
Mitofagia , Polifenóis , Humanos , Mitofagia/efeitos dos fármacos , Polifenóis/uso terapêutico , Polifenóis/farmacologia , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismoRESUMO
Near-infrared photosensitizers are valuable tools to improve treatment depth in photodynamic therapy (PDT). However, their low singlet oxygen (1O2) generation ability, indicated by low 1O2 quantum yield, presents a formidable challenge for PDT. To overcome this challenge, the heptamethine cyanine was decorated with biocompatible S (Scy7) and Se (Secy7) atom. We observe that Secy7 exhibits a redshift in the main absorption to ~840 nm and an ultra-efficient 1O2 generation capacity. The emergence of a strong intramolecular charge transfer effect between the Se atom and polymethine chain considerably narrows the energy gap (0.51 eV), and the heavy atom effect of Se strengthens spin-orbit coupling (1.44 cm-1), both of which greatly improved the high triplet state yield (61%), a state that determines the energy transfer to O2. Therefore, Secy7 demonstrated excellent 1O2 generation capacity, which is ~24.5-fold that of indocyanine green, ~8.2-fold that of IR780, and ~1.3-fold that of methylene blue under low-power-density 850 nm irradiation (5 mW cm-2). Secy7 exhibits considerable phototoxicity toward cancer cells buried under 12 mm of tissue. Nanoparticles formed by encapsulating Secy7 within amphiphilic polymers and lecithin, demonstrated promising antitumor and anti-pulmonary metastatic effects, exhibiting remarkable potential for advancing PDT in deep tissues.
RESUMO
BACKGROUND: Serum microRNAs (miRNAs) are promising non-invasive biomarkers for diagnosing glioma. However, most reported predictive models are constructed without a large enough sample size, and quantitative expression levels of their constituent serum miRNAs are susceptible to batch effects, decreasing their clinical applicability. METHODS: We propose a general method for detecting qualitative serum predictive biomarkers using a large cohort of miRNA-profiled serum samples (n = 15,460) based on the within-sample relative expression orderings of miRNAs. RESULTS: Two panels of miRNA pairs (miRPairs) were developed. The first was composed of five serum miRPairs (5-miRPairs), reaching 100% diagnostic accuracy in three validation sets for distinguishing glioma and non-cancer controls (n = 436: glioma = 236, non-cancers = 200). An additional validation set without glioma samples (non-cancers = 2611) showed a predictive accuracy of 95.9%. The second panel included 32 serum miRPairs (32-miRPairs), reaching 100% diagnostic performance in training set on specifically discriminating glioma from other cancer types (sensitivity = 100%, specificity = 100%, accuracy = 100%), which was reproducible in five validation datasets (n = 3387: glioma = 236, non-glioma cancers = 3151, sensitivity> 97.9%, specificity> 99.5%, accuracy> 95.7%). In other brain diseases, the 5-miRPairs classified all non-neoplastic samples as non-cancer, including stroke (n = 165), Alzheimer's disease (n = 973), and healthy samples (n = 1820), and all neoplastic samples as cancer, including meningioma (n = 16), and primary central nervous system lymphoma samples (n = 39). The 32-miRPairs predicted 82.2 and 92.3% of the two kinds of neoplastic samples as positive, respectively. Based on the Human miRNA tissue atlas database, the glioma-specific 32-miRPairs were significantly enriched in the spinal cord (p = 0.013) and brain (p = 0.015). CONCLUSIONS: The identified 5-miRPairs and 32-miRPairs provide potential population screening and cancer-specific biomarkers for glioma clinical practice.
Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , MicroRNAs/genética , Biomarcadores Tumorais/genética , Encéfalo , Bases de Dados FactuaisRESUMO
The combination of photodynamic therapy (PDT) and chemotherapy (chemo-photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non-suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP-activated nanoparticles (CDNPs) that are directly self-assembled from near-infrared photosensitizer (Cy-I) and amphiphilic Cd(II) complex (DPA-Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy-I is capable of producing single oxygen (1 O2 ) for PDT with 808 nm irradiation and DPA-Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor-bearing mice after intravenous injection of CDNPs. This carrier-free nanoparticle offers a new platform for chemo-photodynamic therapy.
Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Cádmio , Fármacos Fotossensibilizantes/uso terapêutico , Raios Infravermelhos , Neoplasias/tratamento farmacológicoRESUMO
A palladium-catalyzed regioselective and asymmetric allylic alkylation of azlactones with MBH carbonates has been developed with chiral oxalamide-phosphine ligands. The corresponding reaction afforded a range of optically active γ-arylidenyl glutamic acid derivatives bearing an α-chiral quaternary stereocenter in good yields with excellent linear regio- and high enantioselectivity. This protocol furnishes an alternative approach for the construction of enantio-enriched unnatural α-amino acid derivatives.
RESUMO
This study aimed to investigate the effect of N-acetylcysteine (NAC) on indomethacin (IDMT)-induced intestinal injury in a piglet model and explore the underlying molecular mechanisms. Piglets were randomly divided into 3 treatment groups: (1) control group; (2) IDMT group; (3) NAC+IDMT group. The results showed that NAC administration significantly increased the average daily gain of piglets, attenuated the intestine hyperemia, and restored normal jejunal morphology. Further studies indicated that NAC administration significantly increased plasma citrulline concentration and jejunal villin expression, but decreased the content of proinflammatory cytokines in plasma and jejunum of IDMT-stimulated piglets. NAC administration selectively decreased the proportion of eosinophils but not neutrophils in plasma. Furthermore, NAC administration significantly increased the activities of superoxide dismutase and catalase in plasma but decreased the concentrations of hydrogen peroxide (plasma) and malondialdehyde (plasma and jejunum), as well as the activity of myeloperoxidase (jejunum) when comparing NAC+IDMT group with IDMT group. Gene Ontology analysis showed that the significantly enriched molecular function term was "ubiquitin-like protein ligase binding" for NAC+IDMT versus IDMT differentially regulated genes. In the biological process category, differentially regulated genes of NAC+IDMT versus IDMT were mainly enriched in immune-related terms. The major enrichments for differentially regulated proteins (DRPs) of NAC+IDMT versus IDMT were terms involved in lipid metabolism and immune response. KEGG pathway enrichment analysis showed that "arginine biosynthesis" was a significant enrichment term for the DRPs of NAC+IDMT versus IDMT. Further studies demonstrated that NAC administration up-regulated argininosuccinate synthase 1 mRNA expression and down-regulated arginase mRNA expression in the jejunum of IDMT-stimulated piglets. Moreover, the content of nitric oxide was restored to a normal level with the reduction of nitric oxide synthase activity. NAC administration ameliorated intestinal injury in IDMT-challenged piglets by enhancing antioxidant and anti-inflammatory functions and modulating arginine metabolism in the small intestine.
RESUMO
Biodegradable shape memory polymers are promising biomaterials for stents used in minimally invasive surgical procedures such as intestinal stents. Herein, a series of biodegradable shape memory polyurethanes (SMPUs) containing a novel phenylalanine-derived chain extender (PHP) are synthesized. Inspired by the fact that the function of biomacromolecules such as proteins is rich and varied because of the multiple combinations of the amino acid in highly evolved biosystems, this study finds that the sequence distribution of PHP in SMPU will also have a great influence on the phase structure and degradation behavior, especially the difference of surface morphology caused by degradation. Considering that the transition temperature (Ttrans ) of SMPU obtained is higher than physiological temperature, oxidized carbon black (OCB) with the ability of photothermal conversion is introduced into SMPU, which can not only endow SMPU with near-infrared response shape recovery characteristics, but also enhance phase separation degree and mechanical properties of them. SMPU/OCB composites show excellent shape memory effect and rapid photothermal response, and they can be degraded by chymotrypsin with an adjustable degradation rate. These SMPU/OCB composites show broad potential for application as intestinal stents.
Assuntos
Poliuretanos , Materiais Inteligentes , Poliuretanos/química , Quimotripsina , Materiais Biocompatíveis/química , TemperaturaRESUMO
Fault diagnosis is critical to ensuring the safety and reliable operation of rotating machinery systems. Long short-term memory networks (LSTM) have received a great deal of attention in this field. Most of the LSTM-based fault diagnosis methods have too many parameters and calculation, resulting in large memory occupancy and high calculation delay. Thus, this paper proposes a low-delay lightweight recurrent neural network (LLRNN) model for mechanical fault diagnosis, based on a special LSTM cell structure with a forget gate. The input vibration signal is segmented into several shorter sub-signals in order to shorten the length of the time sequence. Then, these sub-signals are sent into the network directly and converted into the final diagnostic results without any manual participation. Compared with some existing methods, our experiments illustrate that the proposed method has less memory space occupancy and lower computational delay while maintaining the same level of accuracy.
RESUMO
To improve the fault diagnosis performance for rotating machinery, an efficient, noise-resistant end-to-end deep learning (DL) algorithm is proposed based on the advantages of the wavelet packet transform in vibration signal processing (the capability to extract multiscale information and more spectral distribution features) and deep convolutional neural networks (good classification performance, data-driven design and high transfer-learning ability). First, a vibration signal is subjected to pyramid wavelet packet decomposition, and each sub-band coefficient is used as the input for each channel of a deep convolutional network (DCN). Then, based on the lightweight modeling requirements and techniques, a new DCN structure is designed for the fault diagnosis. The proposed algorithm is compared with the support vector machine algorithm and the published DL algorithms based on a bearing dataset produced by Case Western Reserve University. The experimental results show that the proposed algorithm is superior to the existing algorithms in terms of accuracy, memory space, computational complexity, noise resistance, and transfer performance, producing good results.
RESUMO
Many viral proteins are related to suppressing apoptosis in target cells and are hence beneficial to viral replication. The V protein of Newcastle disease virus (NDV) is one such protein that plays an important role in inhibiting apoptosis in a species-specific manner. However, to date, there have been no reports clarifying the antiapoptotic mechanisms of the V protein. The present study was undertaken to determine the apoptotic potential of the V protein in a chicken embryo fibroblast cell line (DF-1 cell) and to elucidate its molecular mechanisms of action. Here, a yeast two-hybrid system was used to screen the host proteins that interact with the V protein and identified thioredoxin-like protein 1 (TXNL1) as a potential binding partner. Immuno-colocalization of V protein and TXNL1 protein in DF-1 cells further verified the interaction of the two proteins. Through the overexpression of TXNL1 protein and knockdown of TXNL1 protein in DF-1 cells, the effects of NDV replication and cell apoptosis were examined. Cell apoptosis was detected by flow cytometry. The mRNA and protein expression levels of Bax, Bcl-2 and Caspase-3 were detected by quantitative real-time PCR (Q-PCR) and Western blotting. NDV expression was detected by Q-PCR and plaque assay. The results revealed that the TXNL1 protein induced apoptosis and inhibited NDV replication in DF-1 cells. Furthermore, the Western blot and Q-PCR results suggested that TXNL1 induced cell apoptosis through a pathway involving Bcl-2\Bax and Caspase-3. Finally, this work provides insight into the mechanism by which the V protein inhibits apoptosis.
Assuntos
Apoptose/genética , Proteínas Aviárias/genética , Regulação para Baixo , Vírus da Doença de Newcastle/fisiologia , Tiorredoxinas/genética , Proteínas Virais/metabolismo , Animais , Proteínas Aviárias/metabolismo , Embrião de Galinha , Fibroblastos , Vírus da Doença de Newcastle/imunologia , Tiorredoxinas/metabolismoRESUMO
Shape-memory polymers are highly desirable in implant biomaterials for minimally invasive surgical procedures. However, most of them lack suitable transition temperature, mechanical properties, and biodegradability. Here, a series of shape-memory polyurethanes are synthesized by postcrosslinking in hard-segment domains using a flexible crosslinker. The materials used are all nontoxic and biodegradable. Through postcrosslinking of unsaturated linear polyurethanes with flexible and biodegradable crosslinker, the crosslinked polyurethanes (CPUs) show good mechanical properties, excellent shape-memory property, and repeatability. The post-crosslinking structure and shape-memory mechanism of CPUs are investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, and dynamic mechanical analysis tests. The crosslinker endows the fixed phase enough crosslinking and inserts in the hard segments to give the fixed phase certain elasticity. The elastic hard segments make them form more hydrogen bonds with soft segments during shape deformation. The low-molecular-weight poly (ε-caprolactone) offers the samples a shape-memory transition temperature at around 37 °C, which is suitable for implant devices in vivo. This work expands CPUs with an elastic crosslinking structure as potential candidates for implant biomaterials. Since the post-crosslinking polymerization is facile, it can be convenient for industrial production.
Assuntos
Materiais Biocompatíveis/química , Poliuretanos/química , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Teste de MateriaisRESUMO
In this work, the effects of the Si/Al ratio and moisture content on thermal transport in sustainable geopolymers have been comprehensively investigated by using the molecular dynamics simulation. The thermal conductivity of geopolymer systems increases with the increase of Si/Al ratio, and the phonon vibration frequency region, which plays a major role in the main increase of its thermal conductivity, is 8-25 THz, while the rest of the frequency interval contributes less. With the increase of moisture content, the thermal conductivity of geopolymer systems decreases at first, then increases, and finally stabilizes, which is contrary to the changing trend of the porosity of the system. This is mainly because the existence of pores leads to phonon scattering during thermal transport, which, in turn, affects the thermal conductivity of the system. When the moisture content is 5%, the thermal conductivity reaches a minimum value of about 1.103 W/(m·K), which is 40.2% lower than the thermal conductivity of the system without a water molecule. This work will help to enhance the physical level understanding of the relationship between the geopolymer structures and thermal transport properties.
RESUMO
Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.
Assuntos
Receptores de Apelina , Multimerização Proteica , Humanos , Receptores de Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/química , Animais , Transdução de Sinais , Aterosclerose/metabolismo , Demência Vascular/metabolismo , Demência Vascular/patologia , Hipertensão/metabolismo , Hipertensão/patologiaRESUMO
It is of great significance to establish a low-cost, high-efficiency, self-powered micrometeorological monitoring system for agriculture, animal husbandry, and transportation. However, each additional detection element in the meteorological monitoring system increases the power consumption of the whole system by about 0.7 W. As a renewable energy technology, a triboelectric nanogenerator has the advantages of low price and self-powered sensing. To reduce the power consumption of the micrometeorological monitoring system, this work introduces an innovative solution: the wind-gathering enhanced triboelectric-electromagnetic hybrid generator (WGE-TEHG). Coupling the thin-film vibrating triboelectric nanogenerator (TENG) and electromagnetic generator (EMG), the TENG is used to monitor wind direction and the EMG is used to monitor wind speed and provide energy needed by the system. In particular, the TENG can be used as a self-powered sensor to reduce the power consumption of the sensing system. Besides, the TENG is used to produce slit effect to enhance the output performance of EMG. The experimental results show that the WGE-TEHG can build a self-powered natural environment micrometeorological sensing system. It can monitor the wind direction, wind speed, temperature, and relative humidity. This research has great application value for the self-powered sensing implementation of a hybrid TENG and EMG.
RESUMO
Hydroxytyrosol, a naturally occurring compound with antioxidant and antiviral activity, is widely applied in the cosmetic, food, and nutraceutical industries. The development of a biocatalytic approach for producing hydroxytyrosol from simple and readily accessible substrates remains a challenge. Here, we designed and implemented an effective biocatalytic cascade to obtain hydroxytyrosol from 3,4-dihydroxybenzaldehyde and l-threonine via a four-step enzymatic cascade composed of seven enzymes. To prevent cross-reactions and protein expression burden caused by multiple enzymes expressed in a single cell, the designed enzymatic cascade was divided into two modules and catalyzed in a stepwise manner. The first module (FM) assisted the assembly of 3,4-dihydroxybenzaldehyde and l-threonine into (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid, and the second module (SM) entailed converting (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid into hydroxytyrosol. Each module was cloned into Escherichia coli BL21 (DE3) and engineered in parallel by fine-tuning enzyme expression, resulting in two engineered whole-cell catalyst modules, BL21(FM01) and BL21(SM13), capable of converting 30 mM 3,4-dihydroxybenzaldehyde to 28.7 mM hydroxytyrosol with a high space-time yield (0.88 g/L/h). To summarize, the current study proposes a simple and effective approach for biosynthesizing hydroxytyrosol from low-cost substrates and thus has great potential for industrial applications.
Assuntos
Biocatálise , Escherichia coli , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Benzaldeídos/química , Benzaldeídos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/químicaRESUMO
Resveratrol, a naturally occurring polyphenolic compound, has captivated the scientific community with its promising therapeutic potential across a spectrum of diseases. This review explores the complex role of resveratrol in modulating ferroptosis, a newly identified form of programmed cell death, and its potential implications for managing cardiovascular and cerebrovascular disorders, cancer, and other conditions. Ferroptosis is intricately linked to the pathogenesis of diverse diseases, with resveratrol exerting multifaceted effects on this process. It mitigates ferroptosis by modulating lipid peroxidation, iron accumulation, and engaging with specific cellular receptors, thereby manifesting profound therapeutic benefits in cardiovascular and cerebrovascular conditions, as well as oncological settings. Moreover, resveratrol's capacity to either suppress or induce ferroptosis through the modulation of signaling pathways, including Sirt1 and Nrf2, unveils novel therapeutic avenues. Despite resveratrol's limited bioavailability, advancements in molecular modification and drug delivery optimization have amplified its clinical utility. Future investigations are poised to unravel the comprehensive mechanisms underpinning resveratrol's action and expand its therapeutic repertoire. We hope this review could furnish a detailed and novel insight into the exploration of resveratrol in the regulation of ferroptosis and its therapeutic prospects.
RESUMO
Despite the rapid development of tissue adhesives, flaws including allergies, poor stability, and indiscriminate double-sided adhesive properties limit their application in the medical field. In this work, Janus polyurethane patches were spontaneously prepared by adjusting the difference in the functional group distribution between the top and bottom sides of the patch during emulsion drying. Consequently, poor adhesion was exhibited on the bottom surface, while the top surface can easily adhere to metals, polymers, glasses, and tissues. The difference in adhesive strength to pork skin between the two surfaces is more than 5 times. The quaternary ammonium salt and hydrophilic components on the surface of the polyurethane patch enable the rapid removal and absorption of water from the tissue surface to achieve wet adhesion. Animal experiments have demonstrated that this multifunctional Janus polyurethane patch can promote skin wound closure and healing of infected wounds. This facile and effective strategy to construct Janus polyurethane patch provides a promising method for the development of functional tissue-adhesives.
Assuntos
Adesivos , Adesivos Teciduais , Animais , Adesivos/farmacologia , Poliuretanos/farmacologia , Cicatrização , Pele , Adesivos Teciduais/farmacologia , Antibacterianos/farmacologia , HidrogéisRESUMO
The non-peptide-based fluorescent probe QMC11 is capable of specifically targeting asparagine endopeptidase (AEP) and imaging cellular endogenous AEP. The motion of the probe can be restricted by AEP to activate fluorescence while keeping a low background signal.
Assuntos
Cisteína Endopeptidases , Corantes FluorescentesRESUMO
Severe fever with thrombocytopenia syndrome (SFTS) is caused by the SFTS virus (SFTSV) with high morbidity and mortality. The major immunodominant region of SFTSV surface glycoprotein (G) remains unclear. In this study, we constructed adenovirus type 5 (Ad5) vectored vaccine candidates expressing different regions of SFTSV G (Gn, Gc and Gn-Gc) and evaluated their immunogenicity and protective efficacy in mice. In wild-type mice, compared with Ad5-Gc or Ad5-Gn-Gc, Ad5-Gn recruited/activated more dendritic cells and B cells in lymph nodes or peripheral blood, causing Th1-/Th2-mediated responses in splenocytes and triggered a greater level of SFTSV-neutralizing antibodies. In IFNAR Ab-treated mice, immunization of Ad5-Gn exhibited better protection against SFTSV challenge than Ad5-Gc or Ad5-Gn-Gc. Furthermore, passive immunization revealed complete protective immunity of Gn-specific serum rather than Gc. Collectively, our data demonstrated that Gn is the immunodominant fragment of SFTSV G and could be a potential candidate for SFTSV vaccine development.