Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Nature ; 571(7764): 245-250, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292555

RESUMO

Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies1-4. Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites5-9, optimizing the interfaces within the device structures10-13, and using new encapsulation techniques14,15. However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate16-18. Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.

2.
J Am Chem Soc ; 146(23): 15860-15868, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814791

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a benchmark hole-transporting (p-type) polymer that finds applications in diverse electronic devices. Most of its success is due to its facile synthesis in water, exceptional processability from aqueous solutions, and outstanding electrical performance in ambient. Applications in fields like (opto-)electronics, bioelectronics, and energy harvesting/storage devices often necessitate the complementary use of both p-type and n-type (electron-transporting) materials. However, the availability of n-type materials amenable to water-based polymerization and processing remains limited. Herein, we present a novel synthesis method enabling direct polymerization in water, yielding a highly conductive, water-processable n-type conjugated polymer, namely, poly[(2,2'-(2,5-dihydroxy-1,4-phenylene)diacetic acid)-stat-3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione] (PDADF), with remarkable electrical conductivity as high as 66 S cm-1, ranking among the highest for n-type polymers processed using green solvents. The new n-type polymer PDADF also exhibits outstanding stability, maintaining 90% of its initial conductivity after 146 days of storage in air. Our synthetic approach, along with the novel polymer it yields, promises significant advancements for the sustainable development of organic electronic materials and devices.

3.
Small ; 20(15): e2306360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38010121

RESUMO

Nanoplatelets (NPLs) share excellent luminescent properties with their symmetric quantum dots counterparts and entail special characters benefiting from the shape, like the thickness-dependent bandgap and anisotropic luminescence. However, perovskite NPLs, especially those based on iodide, suffer from poor spectral and phase stability. Here, stable CsPbI3 NPLs obtained by accelerating the crystallization process in ambient-condition synthesis are reported. By this kinetic control, the rectangular NPLs into quasi-square NPLs are tuned, where enlarged width endows the NPLs with a lower surface-area-to-volume ratio (S/V ratio), leading to lower surficial energy and thus improved endurance against NPL fusion (cause for spectral shift or phase transformation). The accelerated crystallization, denoting the fast nucleation and short period of growth in this report, is enabled by preparing a precursor with complete transformation of PbI2 into intermediates (PbI3 -), through an additional iodide supplier (e.g., zinc iodide). The excellent color stability of the materials remains in the light-emitting diodes under various bias stresses.

4.
Angew Chem Int Ed Engl ; : e202407273, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770935

RESUMO

A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that while f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~10-140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions and will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

5.
Inorg Chem ; 62(19): 7413-7423, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37128775

RESUMO

Understanding the possible change in UO2 surface reactivity after exposure to oxidants is of key importance when assessing the impact of spent nuclear fuel dissolution on the safety of a repository for spent nuclear fuel. In this work, we have experimentally studied the change in UO2 reactivity after consecutive exposures to O2 or γ-radiation in aqueous solutions containing 10 mM HCO3-. The experiments show that the reactivity of UO2 toward O2 decreases significantly with time in a single exposure. In consecutive exposures, the reactivity also decreases from exposure to exposure. In γ-radiation exposures, the system reaches a steady state and the rate of uranium dissolution becomes governed by the radiolytic production of oxidants. Changes in surface reactivity can therefore not be observed in the irradiated system. The potential surface modification responsible for the change in UO2 reactivity was studied by XPS and UPS after consecutive exposures to either O2, H2O2, or γ-radiation in 10 mM HCO3- solution. The results show that the surfaces were significantly oxidized to a stoichiometric ratio of O/U of UO2.3 under all the three exposure conditions. XPS results also show that the surfaces were dominated by U(V) with no observed U(VI). The experiments also show that U(V) is slowly removed from the surface when exposed to anoxic aqueous solutions containing 10 mM HCO3-. The UPS results show that the outer ultrathin layer of the surfaces most probably contains a significant amount of U(VI). U(VI) may form upon exposure to air during the rinsing process with water prior to XPS and UPS measurements.

6.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447649

RESUMO

Prosthetic joint infection (PJI) is a prevalent and severe complication characterized by high diagnostic challenges. Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished, owing to the substantial noise in CT images and the disparity in data volume between CT images and text data. This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques. It effectively merges features from CT scan images and patients' numerical text data via a Unidirectional Selective Attention (USA) mechanism and a graph convolutional network (GCN)-based Feature Fusion network. We evaluated the proposed method on a custom-built multimodal PJI dataset, assessing its performance through ablation experiments and interpretability evaluations. Our method achieved an accuracy (ACC) of 91.4% and an area under the curve (AUC) of 95.9%, outperforming recent multimodal approaches by 2.9% in ACC and 2.2% in AUC, with a parameter count of only 68 M. Notably, the interpretability results highlighted our model's strong focus and localization capabilities at lesion sites. This proposed method could provide clinicians with additional diagnostic tools to enhance accuracy and efficiency in clinical practice.


Assuntos
Infecções Relacionadas à Prótese , Humanos , Infecções Relacionadas à Prótese/diagnóstico por imagem , Área Sob a Curva , Cultura , Fontes de Energia Elétrica , Tomografia Computadorizada por Raios X
7.
Environ Res ; 214(Pt 3): 113968, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964675

RESUMO

Cathode electrocatalyst is quite critical to realize the application of microbial fuel cells (MFCs). Perovskite oxides have been considered as potential MFCs cathode catalysts to replace Pt/C. Herein, Cu-doped perovskite oxide with a stable porous structure and excellent conductivity was successfully prepared through a sol-gel method. Due to the incorporation of Cu, CaFe0.9Cu0.1O3 has more micropores and a larger surface area, which are more conducive to contact with oxygen. Doping Cu resulted in more Fe3+ in B-site and thus enhanced its binding capability to oxygen molecules. The data from electrochemical test demonstrated that the as-prepared catalyst has good conductivity, high stability, and excellent ORR properties. Compared with Pt/C catalyst, CaFe0.9Cu0.1O3 exhibits a lower overpotential, which had an onset potential of 0.195 V and a half-wave potential of -0.224 V, respectively. CaFe0.9Cu0.1O3 displays an outstanding four-electron pathway for ORR mechanism and demonstrates superiors corrosion resistance and stability. The MFC with CaFe0.9Cu0.1O3 has a greater maximum power density (1090 mW m-3) rather than that of Pt/C cathode (970 mW m-3). This work demonstrated CaFe0.9Cu0.1O3 is an economic and efficient cathodic catalyst for MFCs.


Assuntos
Fontes de Energia Bioelétrica , Compostos de Cálcio , Catálise , Eletrodos , Óxidos/química , Oxigênio/química , Titânio
8.
Nat Mater ; 19(7): 738-744, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32152564

RESUMO

Doping of organic semiconductors is crucial for the operation of organic (opto)electronic and electrochemical devices. Typically, this is achieved by adding heterogeneous dopant molecules to the polymer bulk, often resulting in poor stability and performance due to dopant sublimation or aggregation. In small-molecule donor-acceptor systems, charge transfer can yield high and stable electrical conductivities, an approach not yet explored in all-conjugated polymer systems. Here, we report ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Combining low-ionization-energy polymers with high-electron-affinity counterparts yields conducting interfaces with resistivity values five to six orders of magnitude lower than the separate single-layer polymers. The large decrease in resistivity originates from two parallel quasi-two-dimensional electron and hole distributions reaching a concentration of ∼1013 cm-2. Furthermore, we transfer the concept to three-dimensional bulk heterojunctions, displaying exceptional thermal stability due to the absence of molecular dopants. Our findings hold promise for electro-active composites of potential use in, for example, thermoelectrics and wearable electronics.

9.
Environ Res ; 200: 111736, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310968

RESUMO

Photocatalysis coupled with sulfate radical-based advanced oxidation process (SR-AOPs) is an efficient strategy to enhance the degradation efficiency of organic pollution. Herein, a Z-scheme CuFe2O4/MnO2 composite catalyst was successfully fabricated by the hydrothermal method. A series of characterizations demonstrated that the higher CuFe2O4 particle dispersion and larger BET surface area of CuFe2O4/MnO2 catalyst contributed to a high catalytic activity toward the phenol removal compared with pure CuFe2O4. The effects of catalyst concentration, pH, and peroxymonosulfate (PMS) concentration were studied according to the Box-Behnken Design (BBD) method. The results indicated that 100 mg/L 100 mL phenol could be degraded completely at 0.5 g/L CuFe2O4/MnO2 catalyst, pH = 4.8 and 0.5 mM PMS within 30 min. Moreover, the excellent reusability and stability of CuFe2O4/MnO2 were indicated by the results of recycling degradation and ion leaching test. The free radical quenching experiments and electron spin resonance (ESR) confirmed that h+, SO4•-, and •OH were the main reaction species for phenol oxidation. Based on the results of gas chromatography-mass spectrometry (GC-MS) and ion chromatography, the degradation pathway of phenol was proposed, and the toxicity of phenol degradation intermediates was evaluated. This work may provide new insights into the design of heterojunction photocatalysts for PMS activation to remove organic pollutants.


Assuntos
Compostos de Manganês , Óxidos , Peróxidos , Fenóis
10.
Proc Natl Acad Sci U S A ; 115(47): 11899-11904, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397110

RESUMO

Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.

11.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700604

RESUMO

The stress response genes encoding GADD45γ, and to a lesser extent GADD45ß, are activated early in infection with herpes simplex virus 1 (HSV-1). Cells that had been depleted of GADD45γ by transfection of short hairpin RNA (shRNA) or in which the gene had been knocked out (ΔGADD45γ) yielded significantly less virus than untreated infected cells. Consistent with lower virus yields, the ΔGADD45γ cells (either uninfected or infected with HSV-1) exhibited significantly higher levels of transcripts of a cluster of innate immunity genes, including those encoding IFI16, IFIT1, MDA5, and RIG-I. Members of this cluster of genes were reported by this laboratory to be activated concurrently with significantly reduced virus yields in cells depleted of LGP2 or HDAC4. We conclude that innate immunity to HSV-1 is normally repressed in unstressed cells and repression appears to be determined by two mechanisms. The first, illustrated here, is through activation by HSV-1 infection of the gene encoding GADD45γ. The second mechanism requires constitutively active expression of LGP2 and HDAC4.IMPORTANCE Previous studies from our laboratory reported that knockout of some innate immunity genes was associated with increases in the expression of overlapping networks of genes and significant loss of the ability to support the replication of HSV-1; knockout of other genes was associated with decreases in the expression of overlapping networks of genes and had no effect on virus replication. In this report, we document that depletion of GADD45γ reduced virus yields concurrently with significant upregulation of the expression of a cluster of innate immunity genes comprising IFI16, IFIT1, MDA5, and RIG-I. This report differs from the preceding study in an important respect; i.e., the preceding study found no evidence to support the hypothesis that HSV-1 maintained adequate levels of LGP2 or HDAC4 to block upregulation of the cluster of innate immunity genes. We show that HSV-1 causes upregulation of the GADD45γ gene to prevent the upregulation of innate immunity genes.


Assuntos
Proteínas de Ciclo Celular/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Imunidade Inata/imunologia , Proteínas Nucleares/imunologia , Animais , Chlorocebus aethiops , Histona Desacetilases/imunologia , Proteínas de Membrana/imunologia , RNA Helicases/imunologia , RNA Interferente Pequeno/imunologia , Células Vero , Replicação Viral/imunologia
12.
Nat Mater ; 18(2): 149-155, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643236

RESUMO

Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization efficiency of 100%. However, this theoretical limit is rarely achieved because of incomplete charge transfer and the presence of unreacted dopant. Here, we establish that common p-dopants can in fact accept two electrons per molecule from conjugated polymers with a low ionization energy. Each dopant molecule participates in two charge-transfer events, leading to the formation of dopant dianions and an ionization efficiency of up to 200%. Furthermore, we show that the resulting integer charge-transfer complex can dissociate with an efficiency of up to 170%. The concept of double doping introduced here may allow the dopant fraction required to optimize charge conduction to be halved.

13.
Proc Natl Acad Sci U S A ; 113(7): E894-901, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831114

RESUMO

We report on the properties and function of two herpes simplex virus-1 (HSV-1) microRNAs (miRNAs) designated "miR-H28" and "miR-H29." Both miRNAs accumulate late in productive infection at a time when, for the most part, viral DNA and proteins have been made. Ectopic expression of miRNA mimics in human cells before infection reduced the accumulation of viral mRNAs and proteins, reduced plaque sizes, and at vey low multiplicities of infection reduced viral yields. The specificity of the miRNA mimics was tested in two ways. First, ectopic expression of mimics carrying mutations in the seed sequence was ineffective. Second, in similar tests two viral miRNAs made early in productive infection also had no effect. Both miR-H28 and miR-H29 are exported from infected cells in exosomes. A noteworthy finding is that both miR-H28 and miR-H29 were absent from murine ganglia harboring latent virus but accumulated in ganglia in which the virus was induced to reactivate. The significance of these findings rests on the principle that the transmission of HSV from person to person is by physical contact between the infected tissues of the donor and those of uninfected recipient. Diminished size of primary or recurrent lesions could be predicted to enhance person-to-person transmission. Reduction in the amount of reactivating latent virus would reduce the risk of retrograde transport to the CNS but would not interfere with anterograde transport to a site at or near the site of initial infection.


Assuntos
Herpesvirus Humano 1/fisiologia , MicroRNAs/genética , Replicação Viral/genética , Linhagem Celular , Humanos
14.
Angew Chem Int Ed Engl ; 58(37): 13107-13112, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31342613

RESUMO

Conductivity, carrier mobility, and a suitable Gibbs free energy are important criteria that determine the performance of catalysts for a hydrogen evolution reaction (HER). However, it is a challenge to combine these factors into a single compound. Herein, we discover a superior electrocatalyst for a HER in the recently identified Dirac nodal arc semimetal PtSn4 . The determined turnover frequency (TOF) for each active site of PtSn4 is 1.54 H2 s-1 at 100 mV. This sets a benchmark for HER catalysis on Pt-based noble metals and earth-abundant metal catalysts. We make use of the robust surface states of PtSn4 as their electrons can be transferred to the adsorbed hydrogen atoms in the catalytic process more efficiently. In addition, PtSn4 displays excellent chemical and electrochemical stabilities after long-term exposure in air and long-time HER stability tests.

15.
Proc Natl Acad Sci U S A ; 111(33): 11943-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25002504

RESUMO

Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.

16.
Med Sci Monit ; 22: 5181-5189, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28030536

RESUMO

BACKGROUND Identifying and assessing retinal nerve fiber layer defects are important for diagnosing and managing glaucoma. We aimed to investigate the effect of refractive correction error on retinal nerve fiber layer (RNFL) thickness measured with Spectralis spectral-domain optical coherence tomography (SD-OCT). MATERIAL AND METHODS We included 68 participants: 32 healthy (normal) and 36 glaucoma patients. RNFL thickness was measured using Spectralis SD-OCT circular scan. Measurements were made with a refractive correction of the spherical equivalent (SE), the SE+2.00D and the SE-2.00D. RESULTS Average RNFL thickness was significantly higher in the normal group (105.88±10.47 µm) than in the glaucoma group (67.67±17.27 µm, P<0.001). In the normal group, +2.00D of refractive correction error significantly affected measurements of average (P<0.001) and inferior quadrant (P=0.037) RNFL thickness. In the glaucoma group, +2.00D of refractive correction error significantly increased average (P<0.001) and individual quadrant (superior: P=0.016; temporal: P=0.004; inferior: P=0.008; nasal: P=0.003) RNFL measurements compared with those made with the proper refractive correction. However, -2.00D of refractive correction error did not significantly affect RNFL thickness measurements in either group. CONCLUSIONS Positive defocus error significantly affects RNFL thickness measurements made by the Spectralis SD-OCT. Negative defocus error did not affect RNFL measurement examined. Careful correction of refractive error is necessary to obtain accurate baseline and follow-up RNFL thickness measurements in healthy and glaucomatous eyes.


Assuntos
Fibras Nervosas/patologia , Erros de Refração/diagnóstico , Retina/patologia , Tomografia de Coerência Óptica/métodos , Demografia , Feminino , Glaucoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade
17.
Ecotoxicol Environ Saf ; 128: 11-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26874984

RESUMO

A total of 46 polycyclic aromatic hydrocarbons (PAHs, 21 parent and 25 alkylated) were determined in seawater, surface sediment and oyster from coastal area of Dalian, North China. The concentration of Σ46PAHs in seawater, sediment, and oyster were 136-621 ng/L, 172-4700 ng/g dry weight (dw) and 60.0-129 ng/g wet weight (ww) in winter, and 65.0-1130 ng/L, 71.1-1090 ng/g dw and 72.8-216 ng/g ww in summer, respectively. High PAH levels were found in industrial area both in winter and summer. Selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL, TEL-PEL indexes) for evaluation probable toxic effects on marine organism and the results indicate that surface sediment from all sampling sites have a low to medium ecotoxicological risk. Daily intake of PAHs via oyster as seafood by humans were estimated and the results indicated that oyster intake would not pose a health risk to humans even 30 days after a oil spill accident near by. Water-sediment exchange analysis showed that, both in winter and summer, the fluxes for most high molecular weight PAHs were from seawater to sediment, while for low molecular weight PAHs, an equilibrium was reached between seawater and sediment.


Assuntos
Ostreidae , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Adulto , Animais , China , Monitoramento Ambiental , Contaminação de Alimentos/análise , Sedimentos Geológicos/análise , Humanos , Medição de Risco , Alimentos Marinhos/análise , Estações do Ano , Água do Mar/análise
18.
Sensors (Basel) ; 16(2): 222, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861342

RESUMO

In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10(-6) M to 10(-3) M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.


Assuntos
Técnicas Biossensoriais/métodos , Ácido Glutâmico/isolamento & purificação , Nanotubos/química , Ácido Glutâmico/química , Hidrogênio/química , Espectroscopia Fotoeletrônica , Polietilenoglicóis , Óxido de Zinco/química
19.
J Am Chem Soc ; 136(16): 6083-91, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24684678

RESUMO

Mass production of high-quality graphene sheets is essential for their practical application in electronics, optoelectronics, composite materials, and energy-storage devices. Here we report a prompt electrochemical exfoliation of graphene sheets into aqueous solutions of different inorganic salts ((NH4)2SO4, Na2SO4, K2SO4, etc.). Exfoliation in these electrolytes leads to graphene with a high yield (>85%, ≤3 layers), large lateral size (up to 44 µm), low oxidation degree (a C/O ratio of 17.2), and a remarkable hole mobility of 310 cm(2) V(-1) s(-1). Further, highly conductive graphene films (11 Ω sq(-1)) are readily fabricated on an A4-size paper by applying brush painting of a concentrated graphene ink (10 mg mL(-1), in N,N'-dimethylformamide). All-solid-state flexible supercapacitors manufactured on the basis of such graphene films deliver a high area capacitance of 11.3 mF cm(-2) and an excellent rate capability of 5000 mV s(-1). The described electrochemical exfoliation shows great promise for the industrial-scale synthesis of high-quality graphene for numerous advanced applications.

20.
Carbon N Y ; 74: 282-290, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25843961

RESUMO

We studied the effect of varying sonication and centrifugation parameters on double-walled carbon nanotubes (DWCNT) by measuring optical absorption and photoluminescence (PL) of the samples. We found that by using a low sonication intensity before applying density gradient ultracentrifugation (DGU), only inner tube species with a diameter [Formula: see text]0.8 nm can be identified in absorption measurements. This is in stark contrast to the result after sonicating at higher intensities, where also bigger inner tubes can be found. Furthermore, by comparing PL properties of samples centrifugated either with or without a gradient medium, we found that applying DGU greatly enhances the PL intensity, whereas centrifugation at even higher speeds but without a gradient medium results in lower intensities. This can be explained by extraction of inner tubes from their host outer tubes in a two-stage process: the different shearing forces from the sonication treatments result in some DWCNT to be opened, whereas others stay uncut. A subsequent application of DGU leads to the extraction of the inner tubes or not if the host nanotube stayed uncut or no gradient medium was used. This work shows a pathway to avoid this phenomenon to unravel the intrinsic PL from inner tubes of DWCNT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA