Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 33(8): e2003955, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33368710

RESUMO

Lithium-sulfur (Li-S) batteries hold the promise of the next generation energy storage system beyond state-of-the-art lithium-ion batteries. Despite the attractive gravimetric energy density (WG ), the volumetric energy density (WV ) still remains a great challenge for the practical application, based on the primary requirement of Small and Light for Li-S batteries. This review highlights the importance of cathode density, sulfur content, electroactivity in achieving high energy densities. In the first part, key factors are analyzed in a model on negative/positive ratio, cathode design, and electrolyte/sulfur ratio, orientated toward energy densities of 700 Wh L-1 /500 Wh kg-1 . Subsequently, recent progresses on enhancing WV for coin/pouch cells are reviewed primarily on cathode. Especially, the "Three High One Low" (THOL) (high sulfur fraction, high sulfur loading, high density host, and low electrolyte quantity) is proposed as a feasible strategy for achieving high WV , taking high WG into consideration simultaneously. Meanwhile, host materials with desired catalytic activity should be paid more attention for fabricating high performance cathode. In the last part, key engineering technologies on manipulating the cathode porosity/density are discussed, including calendering and dry electrode coating. Finally, a future outlook is provided for enhancing both WV and WG of the Li-S batteries.

2.
Adv Sci (Weinh) ; 7(12): 1903693, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596113

RESUMO

For high-energy lithium-sulfur batteries, the poor volumetric energy density is a bottleneck as compared with lithium-ion batteries, due to the low density of both the sulfur active material and sulfur host. Herein, in order to enhance the volumetric energy density of sulfur cathode, a universal approach is proposed to fabricate a compact sulfur cathode with dense materials as sulfur host, instead of the old-fashioned lightweight carbon nanomaterials. Based on this strategy, heavy lanthanum strontium manganese oxide (La0.8Sr0.2MnO3), with a high theoretical density of up to 6.5 g cm-3, is introduced as sulfur host. Meanwhile, the La0.8Sr0.2MnO3 host also acts as an efficient electrocatalyst to accelerate the diffusion, adsorption, and redox dynamics of lithium polysulfides in the charge-discharge processes. As a result, such S/La0.8Sr0.2MnO3 cathode presents high gravimetric/volumetric capacity and outstanding cycling stability. Moreover, an ultra-high volumetric energy density of 2727 Wh L-1 -cathode is achieved based on the densification effect with higher density (1.69 g cm-3), which is competitive to the Ni-rich oxide cathode (1800-2160 Wh L-1) of lithium-ion batteries. The current study opens up a path for constructing high volumetric capacity sulfur cathode with heavy and catalytic host toward practical applications of lithium-sulfur batteries.

3.
ACS Appl Mater Interfaces ; 12(5): 5909-5919, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944646

RESUMO

Effective hosts of sulfur are essential for the application of lithium-sulfur batteries. However, various refined nanomaterials or carbon-based hosts possess low density, high surface area, and large porosity, leading to undesirable reduction on both gravimetric and volumetric energy densities. Herein, spherical metal oxides with high tap density are introduced as carbon-free hosts of sulfur for the first time. The ternary oxides show a superior synergistic effect of adsorption and electrocatalytic conversion of soluble intermediate polysulfides. Besides, oxide microspheres can build stable conductive frameworks and open channels in porous electrodes for fast transport of electrons and active diffusion of electrolyte. Such a synergistic effect and unique structural feature of porous electrodes are favorable for achieving good utilization and stable cycle performance of the sulfur cathode. Typically, the S/LiNi0.8Co0.1Mn0.1O2 composite exhibits good cycle stability with a low capacity decay rate (0.057% per cycle) during 500 cycles at 0.1 C. Importantly, due to the high tap density (1.81 g cm-3), the S/LiNi0.8Co0.1Mn0.1O2 composite delivers a larger volumetric capacity (1601.9 mAh cm-3-composite), almost 2.3 times of S/carbon composite (689.4 mAh cm-3-composite). Therefore, this work provides a feasible strategy to reach long life and high volumetric capacity of cathode based on metal oxides as sulfur hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA