Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Immunity ; 46(3): 474-487, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314594

RESUMO

Brain ischemia inhibits immune function systemically, with resulting infectious complications. Whether in stroke different immune alterations occur in brain and periphery and whether analogous mechanisms operate in these compartments remains unclear. Here we show that in patients with ischemic stroke and in mice subjected to middle cerebral artery occlusion, natural killer (NK) cells display remarkably distinct temporal and transcriptome profiles in the brain as compared to the periphery. The activation of catecholaminergic and hypothalamic-pituitary-adrenal axis leads to splenic atrophy and contraction of NK cell numbers in the periphery through a modulated expression of SOCS3, whereas cholinergic innervation-mediated suppression of NK cell responses in the brain involves RUNX3. Importantly, pharmacological or genetic ablation of innervation preserved NK cell function and restrained post-stroke infection. Thus, brain ischemia compromises NK cell-mediated immune defenses through mechanisms that differ in the brain versus the periphery, and targeted inhibition of neurogenic innervation limits post-stroke infection.


Assuntos
Isquemia Encefálica/imunologia , Encéfalo/imunologia , Células Matadoras Naturais/imunologia , Baço/imunologia , Idoso , Animais , Isquemia Encefálica/complicações , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Infecções/etiologia , Infecções/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
2.
Ann Neurol ; 96(2): 276-288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780377

RESUMO

OBJECTIVE: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease. METHODS: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy. For significant results (p < 0.05), volumes of atrophic areas are reported. RESULTS: We studied 135 MOGAD patients, 135 AQP4+NMOSD, 175 RRMS, and 144 healthy controls (HC). Compared with HC, MOGAD showed lower GM volumes in the temporal lobes, deep GM, insula, and cingulate cortex (75.79 cm3); AQP4+NMOSD in the occipital cortex (32.83 cm3); and RRMS diffusely in the GM (260.61 cm3). MOGAD showed more pronounced temporal cortex atrophy than RRMS (6.71 cm3), whereas AQP4+NMOSD displayed greater occipital cortex atrophy than RRMS (19.82 cm3). RRMS demonstrated more pronounced deep GM atrophy in comparison with MOGAD (27.90 cm3) and AQP4+NMOSD (47.04 cm3). In MOGAD, higher periventricular and cortical/juxtacortical lesions were linked to reduced temporal cortex, deep GM, and insula volumes. In RRMS, the diffuse GM atrophy was associated with lesions in all locations. AQP4+NMOSD showed no lesion/GM volume correlation. INTERPRETATION: GM atrophy is more widespread in RRMS compared with the other two conditions. MOGAD primarily affects the temporal cortex, whereas AQP4+NMOSD mainly involves the occipital cortex. In MOGAD and RRMS, lesion-related tract degeneration is associated with atrophy, but this link is absent in AQP4+NMOSD. ANN NEUROL 2024;96:276-288.


Assuntos
Aquaporina 4 , Atrofia , Autoanticorpos , Substância Cinzenta , Imageamento por Ressonância Magnética , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica , Substância Branca , Humanos , Feminino , Aquaporina 4/imunologia , Neuromielite Óptica/patologia , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/imunologia , Masculino , Glicoproteína Mielina-Oligodendrócito/imunologia , Adulto , Atrofia/patologia , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/imunologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Autoanticorpos/sangue , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto Jovem
3.
Brain ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703370

RESUMO

Gray matter (GM) atrophies were observed in multiple sclerosis, neuromyelitis optica spectrum disorders (both anti-aquaporin-4 antibody-positive [AQP4+], and -negative [AQP4-] subtypes NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Revealing the pathogenesis of brain atrophy in these disorders would help their differential diagnosis and guide therapeutic strategies. To determine the neurobiological underpinnings of GM atrophies in multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, and MOGAD, we conducted a virtual histology analysis that links T1-weighted image derived GM atrophy and gene expression using a multicenter cohort of 324 patients with multiple sclerosis, 197 patients with AQP4+ NMOSD, 75 patients with AQP4- NMOSD, 47 patients with MOGAD, and 2,169 healthy controls (HCs). First, interregional GM atrophy profiles across the cortical and subcortical regions were determined by Cohen's d between patients with multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, MOGAD and HCs. Then, the GM atrophy profiles were spatially correlated with the gene expressions extracted from the Allen Human Brain Atlas, respectively. Finally, we explored the virtual histology of clinical feature relevant GM atrophy by subgroup analysis that stratified by physical disability, disease duration, number of relapses, lesion burden, and cognitive function. Multiple sclerosis showed severe widespread GM atrophy pattern, mainly involving subcortical nuclei and brainstem. AQP4+ NMOSD showed obvious widespread GM atrophy pattern, predominately located in occipital cortex as well as cerebellum. AQP4- NMOSD showed mild widespread GM atrophy pattern, mainly located in frontal and parietal cortices. MOGAD showed GM atrophy mainly involving the frontal and temporal cortices. High expression of genes specific to microglia, astrocytes, oligodendrocytes, and endothelial cells in multiple sclerosis, S1 pyramidal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD had spatial correlations with GM atrophy profiles were observed, while no atrophy profile related gene expression was found in AQP4- NMOSD. Virtual histology of clinical feature relevant GM atrophy mainly pointed to the shared neuronal and endothelial cells among the four neuroinflammatory diseases. The unique underlying virtual histology patterns were microglia, astrocytes, and oligodendrocytes for multiple sclerosis; astrocytes for AQP4+ NMOSD; and oligodendrocytes for MOGAD. Neuronal and endothelial cells were shared potential targets across these neuroinflammatory diseases. These findings might help their differential diagnosis and optimal therapeutic strategies.

4.
Stroke ; 55(3): 687-695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38269540

RESUMO

BACKGROUND: The purpose of this study was to investigate the association between the mean upper cervical spinal cord cross-sectional area (MUCCA) and the risk and severity of cerebral small vessel disease (CSVD). METHODS: Community-dwelling residents in Lishui City, China, from the cross-sectional survey in the PRECISE cohort study (Polyvascular Evaluation for Cognitive Impairment and Vascular Events) conducted from 2017 to 2019. We included 1644 of 3067 community-dwelling adults in the PRECISE study after excluding those with incorrect, incomplete, insufficient, or missing clinical or imaging data. Total and modified total CSVD scores, as well as magnetic resonance imaging features, including white matter hyperintensity, lacunes, cerebral microbleeds, enlarged perivascular spaces, and brain atrophy, were assessed at the baseline. The Spinal Cord Toolbox was used to measure the upper cervical spinal cord cross-sectional area of the C1 to C3 segments of the spinal cord and its average value was taken as MUCCA. Participants were divided into 4 groups according to quartiles of MUCCA. Associations were analyzed using linear regression models adjusted for age, sex, current smoking and drinking, medical history, intracranial volume, and total cortical volume. RESULTS: The means±SD age of the participants was 61.4±6.5 years, and 635 of 1644 participants (38.6%) were men. The MUCCA was smaller in patients with CSVD than those without CSVD. Using the total CSVD score as a criterion, the MUCCA was 61.78±6.12 cm2 in 504 of 1644 participants with CSVD and 62.74±5.94 cm2 in 1140 of 1644 participants without CSVD. Using the modified total CSVD score, the MUCCA was 61.81±6.04 cm2 in 699 of 1644 participants with CSVD and 62.91±5.94 cm2 in 945 of 1644 without CSVD. There were statistical differences between the 2 groups after adjusting for covariates in 3 models. The MUCCA was negatively associated with the total and modified total CSVD scores (adjusted ß value, -0.009 [95% CI, -0.01 to -0.003] and -0.007 [95% CI, -0.01 to -0.0006]) after adjustment for covariates. Furthermore, the MUCCA was negatively associated with the white matter hyperintensity burden (adjusted ß value, -0.01 [95% CI, -0.02 to -0.003]), enlarged perivascular spaces in the basal ganglia (adjusted ß value, -0.005 [95% CI, -0.009 to -0.001]), lacunes (adjusted ß value, -0.004 [95% CI, -0.007 to -0.0007]), and brain atrophy (adjusted ß value, -0.009 [95% CI, -0.01 to -0.004]). CONCLUSIONS: The MUCCA and CSVD were correlated. Spinal cord atrophy may serve as an imaging marker for CSVD; thus, small vessel disease may involve the spinal cord in addition to being intracranial.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Medula Cervical , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Estudos de Coortes , Medula Cervical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Atrofia/patologia
5.
J Transl Med ; 22(1): 419, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702818

RESUMO

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Assuntos
Apoptose , Proliferação de Células , Glioblastoma , Mitocôndrias , Biogênese de Organelas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Neurol Neurosurg Psychiatry ; 95(8): 761-766, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38453475

RESUMO

BACKGROUND: Although trigeminal nerve involvement is a characteristic of multiple sclerosis (MS), its prevalence across studies varies greatly due to MRI resolution and cohort selection bias. The mechanism behind the site specificity of trigeminal nerve injury is still unclear. We aim to determine the prevalence of trigeminal nerve involvement in patients with MS in a consecutive 7T brain MRI cohort. METHODS: This observational cohort originates from an ongoing China National Registry of Neuro-Inflammatory Diseases. Inclusion criteria were the following: age 18 years or older, diagnosis of MS according to the 2017 McDonald criteria and no clinical relapse within the preceding 3 months. Each participant underwent 7T MAGNETOM Terra scanner (Siemens, Erlangen, Germany), using a 32-channel phased array coil at Beijing Tiantan Hospital. T1-weighted magnetisation-prepared rapid acquisition gradient echoes, fluid-attenuated inversion recovery (FLAIR) and fluid and white matter suppression images were used to identify lesions. FLAIR* and T2* weighted images were used to identify central vein sign (CVS) within the trigeminal lesions. RESULTS: 120 patients underwent 7T MRI scans between December 2021 and May 2023. 19/120 (15.8%) patients had a total of 45 trigeminal lesions, of which 11/19 (57.9%) were bilateral. The linear lesions extended along the trigeminal nerve, from the root entry zone (REZ) (57.8%, 26/45) to the pontine-medullary nucleus (42.2%, 19/45). 26.9% (7/26) of the lesions in REZ showed a typical central venous sign. CONCLUSION: In this 7T MRI cohort, the prevalence of trigeminal nerve involvement was 15.8%. Characteristic CVS was detected in 26.9% of lesions in REZ. This suggests an inflammatory demyelination mechanism of trigeminal nerve involvement in MS.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Nervo Trigêmeo , Humanos , Masculino , Feminino , Adulto , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Pessoa de Meia-Idade , Nervo Trigêmeo/diagnóstico por imagem , Nervo Trigêmeo/patologia , Estudos de Coortes , Doenças do Nervo Trigêmeo/diagnóstico por imagem , Adulto Jovem
7.
J Magn Reson Imaging ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38544434

RESUMO

BACKGROUND: The fasting-postprandial state remains an underrecognized confounding factor for quantifying cerebral blood flow (CBF) in the cognitive assessment and differential diagnosis of Alzheimer's disease (AD). PURPOSE: To investigate the effects of fasting-postprandial state on arterial spin labeling (ASL)-based CBF in AD patients. STUDY TYPE: Prospective. SUBJECTS: Ninety-two subjects (mean age = 62.5 ± 6.4 years; females 29.3%), including 30 with AD, 32 with mild cognitive impairment (MCI), and 30 healthy controls (HCs). Differential diagnostic models were developed with a 4:1 training to testing set ratio. FIELD STRENGTH/SEQUENCE: 3-T, T1-weighted imaging using gradient echo and pseudocontinuous ASL imaging using turbo spin echo. ASSESSMENT: Two ASL scans were acquired to quantify fasting state and postprandial state regional CBFs based on an automated anatomical labeling atlas. Two-way ANOVA was used to assess the effects of fasting/postprandial state and disease state (AD, MCI, and HC) on regional CBF. Pearson's correlation analysis was conducted between regional CBF and cognitive scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). The diagnostic performances of the fasting state, postprandial state, and mixed state (random mixing of the fasting and postprandial state CBF) in differential diagnosis of AD were conducted using support vector machine and logistic regression models. STATISTICAL TESTS: Two-way ANOVA, Pearson's correlation, and area under the curve (AUC) of diagnostic model were performed. P values <0.05 indicated statistical significance. RESULTS: Fasting-state CBF was correlated with cognitive scores in more brain regions (17 vs. 4 [MMSE] and 15 vs. 9 [MoCA]) and had higher absolute correlation coefficients than postprandial-state CBF. In the differential diagnosis of AD patients from MCI patients and HCs, fasting-state CBF outperformed mixed-state CBF, which itself outperformed postprandial-state CBF. DATA CONCLUSION: Compared with postprandial CBF, fasting-state CBF performed better in terms of cognitive score correlations and in differentiating AD patients from MCI patients and HCs. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

8.
Brain ; 146(6): 2489-2501, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515653

RESUMO

MRI and clinical features of myelin oligodendrocyte glycoprotein (MOG)-antibody disease may overlap with those of other inflammatory demyelinating conditions posing diagnostic challenges, especially in non-acute phases and when serologic testing for MOG antibodies is unavailable or shows uncertain results. We aimed to identify MRI and clinical markers that differentiate non-acute MOG-antibody disease from aquaporin 4 (AQP4)-antibody neuromyelitis optica spectrum disorder and relapsing remitting multiple sclerosis, guiding in the identification of patients with MOG-antibody disease in clinical practice. In this cross-sectional retrospective study, data from 16 MAGNIMS centres were included. Data collection and analyses were conducted from 2019 to 2021. Inclusion criteria were: diagnosis of MOG-antibody disease; AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis; brain and cord MRI at least 6 months from relapse; and Expanded Disability Status Scale (EDSS) score on the day of MRI. Brain white matter T2 lesions, T1-hypointense lesions, cortical and cord lesions were identified. Random forest models were constructed to classify patients as MOG-antibody disease/AQP4-neuromyelitis optica spectrum disorder/multiple sclerosis; a leave one out cross-validation procedure assessed the performance of the models. Based on the best discriminators between diseases, we proposed a guide to target investigations for MOG-antibody disease. One hundred and sixty-two patients with MOG-antibody disease [99 females, mean age: 41 (±14) years, median EDSS: 2 (0-7.5)], 162 with AQP4-neuromyelitis optica spectrum disorder [132 females, mean age: 51 (±14) years, median EDSS: 3.5 (0-8)], 189 with multiple sclerosis (132 females, mean age: 40 (±10) years, median EDSS: 2 (0-8)] and 152 healthy controls (91 females) were studied. In young patients (<34 years), with low disability (EDSS < 3), the absence of Dawson's fingers, temporal lobe lesions and longitudinally extensive lesions in the cervical cord pointed towards a diagnosis of MOG-antibody disease instead of the other two diseases (accuracy: 76%, sensitivity: 81%, specificity: 84%, P < 0.001). In these non-acute patients, the number of brain lesions < 6 predicted MOG-antibody disease versus multiple sclerosis (accuracy: 83%, sensitivity: 82%, specificity: 83%, P < 0.001). An EDSS < 3 and the absence of longitudinally extensive lesions in the cervical cord predicted MOG-antibody disease versus AQP4-neuromyelitis optica spectrum disorder (accuracy: 76%, sensitivity: 89%, specificity: 62%, P < 0.001). A workflow with sequential tests and supporting features is proposed to guide better identification of patients with MOG-antibody disease. Adult patients with non-acute MOG-antibody disease showed distinctive clinical and MRI features when compared to AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis. A careful inspection of the morphology of brain and cord lesions together with clinical information can guide further analyses towards the diagnosis of MOG-antibody disease in clinical practice.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Feminino , Humanos , Neuromielite Óptica/patologia , Estudos Retrospectivos , Glicoproteína Mielina-Oligodendrócito , Estudos Transversais , Aquaporina 4 , Esclerose Múltipla/diagnóstico por imagem , Autoanticorpos , Imageamento por Ressonância Magnética
9.
Neuroradiology ; 66(8): 1373-1382, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866958

RESUMO

BACKGROUND AND PURPOSE: Neuronal intranuclear inclusion disease (NIID) is a rare complex neurodegenerative disorder presents with various radiological features. The study aimed to investigate the structural abnormalities in NIID using multi-shell diffusion MR. MATERIALS AND METHODS: Twenty-eight patients with adult-onset NIID and 32 healthy controls were included. Volumetric and diffusion MRI measures, including volume, fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF) of six brain structures, including cortex, subcortical GM, cerebral WM, cerebellar GM and WM, and brainstem, were obtained and compared between NIID and healthy controls. Associations between MRI measures and clinical variables were investigated. RESULTS: Brain lesions of NIID included corticomedullary junction lesions on DWI, confluent leukoencephalopathy, lesions on callosum, cerebellar middle peduncle, cerebellar paravermal area and brainstem, and brain atrophy. Compared to healthy controls, NIID showed extensive volume loss of all the six brain regions (all p < 0.001); lower FA in cerebral WM (p < 0.001); higher MD in all WM regions; lower ODI in cortex (p < 0.001); higher ODI in subcortical GM (p < 0.001) and brainstem (p = 0.016); lower ICVF in brainstem (p = 0.001), and cerebral WM (p < 0.001); higher ISOVF in all the brain regions (p < 0.001). Higher MD of cerebellar WM was associated with worse cognitive level as evaluated by MoCA scores (p = 0.011). CONCLUSIONS: NIID patients demonstrated widespread brain atrophy but heterogeneous diffusion alterations. Cerebellar WM integrity impairment was correlated with the cognitive decline. The findings of the current study offer a sophisticated picture of brain structural alterations in NIID.


Assuntos
Imagem de Difusão por Ressonância Magnética , Corpos de Inclusão Intranuclear , Doenças Neurodegenerativas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Corpos de Inclusão Intranuclear/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Estudos de Casos e Controles , Idoso , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
10.
Neuroimage ; 271: 120041, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933626

RESUMO

Brain lesion segmentation provides a valuable tool for clinical diagnosis and research, and convolutional neural networks (CNNs) have achieved unprecedented success in the segmentation task. Data augmentation is a widely used strategy to improve the training of CNNs. In particular, data augmentation approaches that mix pairs of annotated training images have been developed. These methods are easy to implement and have achieved promising results in various image processing tasks. However, existing data augmentation approaches based on image mixing are not designed for brain lesions and may not perform well for brain lesion segmentation. Thus, the design of this type of simple data augmentation method for brain lesion segmentation is still an open problem. In this work, we propose a simple yet effective data augmentation approach, dubbed as CarveMix, for CNN-based brain lesion segmentation. Like other mixing-based methods, CarveMix stochastically combines two existing annotated images (annotated for brain lesions only) to obtain new labeled samples. To make our method more suitable for brain lesion segmentation, CarveMix is lesion-aware, where the image combination is performed with a focus on the lesions and preserves the lesion information. Specifically, from one annotated image we carve a region of interest (ROI) according to the lesion location and geometry with a variable ROI size. The carved ROI then replaces the corresponding voxels in a second annotated image to synthesize new labeled images for network training, and additional harmonization steps are applied for heterogeneous data where the two annotated images can originate from different sources. Besides, we further propose to model the mass effect that is unique to whole brain tumor segmentation during image mixing. To evaluate the proposed method, experiments were performed on multiple publicly available or private datasets, and the results show that our method improves the accuracy of brain lesion segmentation. The code of the proposed method is available at https://github.com/ZhangxinruBIT/CarveMix.git.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Encéfalo
11.
J Transl Med ; 21(1): 352, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245044

RESUMO

BACKGROUND: The cerebellum plays key roles in the pathology of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), but the way in which these conditions affect how the cerebellum communicates with the rest of the brain (its connectome) and associated genetic correlates remains largely unknown. METHODS: Combining multimodal MRI data from 208 MS patients, 200 NMOSD patients and 228 healthy controls and brain-wide transcriptional data, this study characterized convergent and divergent alterations in within-cerebellar and cerebello-cerebral morphological and functional connectivity in MS and NMOSD, and further explored the association between the connectivity alterations and gene expression profiles. RESULTS: Despite numerous common alterations in the two conditions, diagnosis-specific increases in cerebellar morphological connectivity were found in MS within the cerebellar secondary motor module, and in NMOSD between cerebellar primary motor module and cerebral motor- and sensory-related areas. Both diseases also exhibited decreased functional connectivity between cerebellar motor modules and cerebral association cortices with MS-specific decreases within cerebellar secondary motor module and NMOSD-specific decreases between cerebellar motor modules and cerebral limbic and default-mode regions. Transcriptional data explained > 37.5% variance of the cerebellar functional alterations in MS with the most correlated genes enriched in signaling and ion transport-related processes and preferentially located in excitatory and inhibitory neurons. For NMOSD, similar results were found but with the most correlated genes also preferentially located in astrocytes and microglia. Finally, we showed that cerebellar connectivity can help distinguish the three groups from each other with morphological connectivity as predominant features for differentiating the patients from controls while functional connectivity for discriminating the two diseases. CONCLUSIONS: We demonstrate convergent and divergent cerebellar connectome alterations and associated transcriptomic signatures between MS and NMOSD, providing insight into shared and unique neurobiological mechanisms underlying these two diseases.


Assuntos
Conectoma , Esclerose Múltipla , Neuromielite Óptica , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/genética , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/genética , Neuromielite Óptica/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Cerebelo/patologia
12.
J Neurol Neurosurg Psychiatry ; 94(1): 31-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216455

RESUMO

OBJECTIVE: To evaluate the clinical significance of deep learning-derived brain age prediction in neuromyelitis optica spectrum disorder (NMOSD) relative to relapsing-remitting multiple sclerosis (RRMS). METHODS: This cohort study used data retrospectively collected from 6 tertiary neurological centres in China between 2009 and 2018. In total, 199 patients with NMOSD and 200 patients with RRMS were studied alongside 269 healthy controls. Clinical follow-up was available in 85 patients with NMOSD and 124 patients with RRMS (mean duration NMOSD=5.8±1.9 (1.9-9.9) years, RRMS=5.2±1.7 (1.5-9.2) years). Deep learning was used to learn 'brain age' from MRI scans in the healthy controls and estimate the brain age gap (BAG) in patients. RESULTS: A significantly higher BAG was found in the NMOSD (5.4±8.2 years) and RRMS (13.0±14.7 years) groups compared with healthy controls. A higher baseline disability score and advanced brain volume loss were associated with increased BAG in both patient groups. A longer disease duration was associated with increased BAG in RRMS. BAG significantly predicted Expanded Disability Status Scale worsening in patients with NMOSD and RRMS. CONCLUSIONS: There is a clear BAG in NMOSD, although smaller than in RRMS. The BAG is a clinically relevant MRI marker in NMOSD and RRMS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Estudos Retrospectivos , Estudos de Coortes , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
13.
J Magn Reson Imaging ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889147

RESUMO

BACKGROUND: Multi-shell diffusion characteristics may help characterize brainstem gliomas (BSGs) and predict H3K27M status. PURPOSE: To identify the diffusion characteristics of BSG patients and investigate the predictive values of various diffusion metrics for H3K27M status in BSG. STUDY TYPE: Prospective. POPULATION: Eighty-four BSG patients (median age 10.5 years [IQR 6.8-30.0 years]) were included, of whom 56 were pediatric and 28 were adult patients. FIELD STRENGTH/SEQUENCE: 3 T, multi-shell diffusion imaging. ASSESSMENT: Diffusion kurtosis imaging and neurite orientation dispersion and density imaging analyses were performed. Age, gender, and diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), radial kurtosis, intracellular volume fraction (ICVF), orientation dispersion index, and isotropic volume fraction (ISOVF), were compared between H3K27M-altered and wildtype BSG patients. STATISTICAL TESTS: Chi-square test, Mann-Whitney U test, multivariate analysis of variance (MANOVA), step-wise multivariable logistic regression. P-values <0.05 were considered significant. RESULTS: 82.4% pediatric and 57.1% adult patients carried H3K27M alteration. In the whole group, the H3K27M-altered BSGs demonstrated higher FA, AK and lower RD, ISOVF. The combination of age and median ISOVF showed fair performance for H3K27M prediction (AUC = 0.78). In the pediatric group, H3K27M-altered BSGs showed higher FA, AK, MK, ICVF and lower RD, MD, ISOVF. The combinations of median ISOVF, 5th percentile of FA, median MK and median MD showed excellent predictive power (AUC = 0.91). In the adult group, H3K27M-altered BSGs showed higher ICVF and lower RD, MD. The 75th percentile of RD demonstrated fair performance for H3K27M status prediction (AUC = 0.75). DATA CONCLUSION: Different alteration patterns of diffusion measures were identified between H3K27M-altered and wildtype BSGs, which collectively had fair to excellent predictive value for H3K27M alteration status, especially in pediatric patients. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

14.
J Magn Reson Imaging ; 58(3): 850-861, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36692205

RESUMO

BACKGROUND: Determination of H3 K27M mutation in diffuse midline glioma (DMG) is key for prognostic assessment and stratifying patient subgroups for clinical trials. MRI can noninvasively depict morphological and metabolic characteristics of H3 K27M mutant DMG. PURPOSE: This study aimed to develop a deep learning (DL) approach to noninvasively predict H3 K27M mutation in DMG using T2-weighted images. STUDY TYPE: Retrospective and prospective. POPULATION: For diffuse midline brain gliomas, 341 patients from Center-1 (27 ± 19 years, 184 males), 42 patients from Center-2 (33 ± 19 years, 27 males) and 35 patients (37 ± 18 years, 24 males). For diffuse spinal cord gliomas, 133 patients from Center-1 (30 ± 15 years, 80 males). FIELD STRENGTH/SEQUENCE: 5T and 3T, T2-weighted turbo spin echo imaging. ASSESSMENT: Conventional radiological features were independently reviewed by two neuroradiologists. H3 K27M status was determined by histopathological examination. The Dice coefficient was used to evaluate segmentation performance. Classification performance was evaluated using accuracy, sensitivity, specificity, and area under the curve. STATISTICAL TESTS: Pearson's Chi-squared test, Fisher's exact test, two-sample Student's t-test and Mann-Whitney U test. A two-sided P value <0.05 was considered statistically significant. RESULTS: In the testing cohort, Dice coefficients of tumor segmentation using DL were 0.87 for diffuse midline brain and 0.81 for spinal cord gliomas. In the internal prospective testing dataset, the predictive accuracies, sensitivities, and specificities of H3 K27M mutation status were 92.1%, 98.2%, 82.9% in diffuse midline brain gliomas and 85.4%, 88.9%, 82.6% in spinal cord gliomas. Furthermore, this study showed that the performance generalizes to external institutions, with predictive accuracies of 85.7%-90.5%, sensitivities of 90.9%-96.0%, and specificities of 82.4%-83.3%. DATA CONCLUSION: In this study, an automatic DL framework was developed and validated for accurately predicting H3 K27M mutation using T2-weighted images, which could contribute to the noninvasive determination of H3 K27M status for clinical decision-making. EVIDENCE LEVEL: 2 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Neoplasias da Medula Espinal , Masculino , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Estudos Retrospectivos , Estudos Prospectivos , Mutação , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/genética
15.
Eur Radiol ; 33(12): 8776-8787, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37382614

RESUMO

OBJECTIVES: To assess the value of coordinatized lesion location analysis (CLLA), in empowering ROI-based imaging diagnosis of gliomas by improving accuracy and generalization performances. METHODS: In this retrospective study, pre-operative contrasted T1-weighted and T2-weighted MR images were obtained from patients with gliomas from three centers: Jinling Hospital, Tiantan Hospital, and the Cancer Genome Atlas Program. Based on CLLA and ROI-based radiomic analyses, a fusion location-radiomics model was constructed to predict tumor grades, isocitrate dehydrogenase (IDH) status, and overall survival (OS). An inter-site cross-validation strategy was used for assessing the performances of the fusion model on accuracy and generalization with the value of area under the curve (AUC) and delta accuracy (ACC) (ACCtesting-ACCtraining). Comparisons of diagnostic performances were performed between the fusion model and the other two models constructed with location and radiomics analysis using DeLong's test and Wilcoxon signed ranks test. RESULTS: A total of 679 patients (mean age, 50 years ± 14 [standard deviation]; 388 men) were enrolled. Based on tumor location probabilistic maps, fusion location-radiomics models (averaged AUC values of grade/IDH/OS: 0.756/0.748/0.768) showed the highest accuracy in contrast to radiomics models (0.731/0.686/0.716) and location models (0.706/0.712/0.740). Notably, fusion models ([median Delta ACC: - 0.125, interquartile range: 0.130]) demonstrated improved generalization than that of radiomics model ([- 0.200, 0.195], p = 0.018). CONCLUSIONS: CLLA could empower ROI-based radiomics diagnosis of gliomas by improving the accuracy and generalization of the models. CLINICAL RELEVANCE STATEMENT: This study proposed a coordinatized lesion location analysis for glioma diagnosis, which could improve the performances of the conventional ROI-based radiomics model in accuracy and generalization. KEY POINTS: • Using coordinatized lesion location analysis, we mapped anatomic distribution patterns of gliomas with specific pathological and clinical features and constructed glioma prediction models. • We integrated coordinatized lesion location analysis into ROI-based analysis of radiomics to propose new fusion location-radiomics models. • Fusion location-radiomics models, with the advantages of being less influenced by variabilities, improved accuracy, and generalization performances of ROI-based radiomics models on predicting the diagnosis of gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Glioma/patologia , Isocitrato Desidrogenase/genética , Encéfalo/patologia , Poder Psicológico
16.
Eur Radiol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855851

RESUMO

OBJECTIVES: To evaluate the utility of amide proton transfer-weighted (APTw) MRI imaging and its derived radiomics in classifying adult-type diffuse glioma. MATERIALS AND METHODS: In this prospective study, APTw imaging was performed on 129 patients with adult-type diffuse gliomas. The mean APTw-related metrics (chemical exchange saturation transfer ratio (CESTR), CESTR normalized with the reference value (CESTRnr), and relaxation-compensated inverse magnetization transfer ratio (MTRRex)) and radiomic features within 3D tumor masks were extracted. APTw-radiomics models were developed using a support vector machine (SVM) classifier. Sensitivity analysis with tumor area of interest, different histogram cutoff values, and other classifiers were conducted. RESULTS: CESTR, CESTRnr, and MTRRex in glioblastomas were all significantly higher (p < 0.0003) than those of oligodendrogliomas and astrocytomas, with no significant difference between oligodendrogliomas and astrocytomas. The APTw-related metrics for IDH-wildtype and high-grade gliomas were significantly higher (p < 0.001) than those for the IDH-mutant and low-grade gliomas, with area under the curve (AUCs) of 0.88 for CESTR. The CESTR-radiomics models demonstrated accuracies of 84% (AUC 0.87), 83% (AUC 0.83), 90% (AUC 0.95), and 84% (AUC 0.86) in predicting the IDH mutation status, differentiating glioblastomas from astrocytomas, distinguishing glioblastomas from oligodendrogliomas, and determining high/low grade prediction, respectively, but showed poor performance in distinguishing oligodendrogliomas from astrocytomas (accuracy 63%, AUC 0.63). The sensitivity analysis affirmed the robustness of the APTw signal and APTw-derived radiomics prediction models. CONCLUSION: APTw imaging, along with its derived radiomics, presents a promising quantitative approach for prediction IDH mutation and grading adult-type diffuse glioma. CLINICAL RELEVANCE STATEMENT: Amide proton transfer-weighted imaging, a quantitative imaging biomarker, coupled with its derived radiomics, offers a promising non-invasive approach for predicting IDH mutation status and grading adult-type diffuse gliomas, thereby informing individualized clinical diagnostics and treatment strategies. KEY POINTS: • This study evaluates the differences of different amide proton transfer-weighted metrics across three molecular subtypes and their efficacy in classifying adult-type diffuse glioma. • Chemical exchange saturation transfer ratio normalized with the reference value and relaxation-compensated inverse magnetization transfer ratio effectively predicts IDH mutation/grading, notably the first one. • Amide proton transfer-weighted imaging and its derived radiomics holds potential to be used as a diagnostic tool in routine clinical characterizing adult-type diffuse glioma.

17.
Neuroradiology ; 65(12): 1707-1714, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837480

RESUMO

PURPOSE: To investigate the predictive value of the "soap bubble" sign on molecular subtypes (Group A [PFA] and Group B [PFB]) of posterior fossa ependymomas (PF-EPNs). METHODS: MRI scans of 227 PF-EPNs (internal retrospective discovery set) were evaluated by two independent neuroradiologists to assess the "soap bubble" sign, which was defined as clusters of cysts of various sizes that look like "soap bubbles" on T2-weighted images. Two independent cohorts (external validation set [n = 31] and prospective validation set [n = 27]) were collected to validate the "soap bubble" sign. RESULTS: Across three datasets, the "soap bubble" sign was observed in 21 PFB cases (7.4% [21/285] of PF-EPNs and 12.9% [21/163] of PFB); none in PFA. Analysis of the internal retrospective discovery set demonstrated substantial interrater agreement (1st Rating: κ = 0.71 [0.53-0.90], 2nd Rating: κ = 0.83 [0.68-0.98]) and intrarater agreement (Rater 1: κ = 0.73 [0.55-0.91], Rater 2: κ = 0.74 [0.55-0.92]) for the "soap bubble" sign; all 13 cases positive for the "soap bubble" sign were PFB (p = 0.002; positive predictive value [PPV] = 100%, negative predictive value [NPV] = 44%, sensitivity = 10%, specificity = 100%). The findings from the external validation set and the prospective validation set were similar, all cases positive for the "soap bubble" sign were PFB (p < 0.001; PPV = 100%). CONCLUSION: The "soap bubble" sign represents a highly specific imaging marker for the PFB molecular subtype of PF-EPNs.


Assuntos
Ependimoma , Humanos , Ependimoma/diagnóstico por imagem , Sabões , Estudos Retrospectivos , Imageamento por Ressonância Magnética
18.
Acta Radiol ; 64(11): 2922-2930, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722801

RESUMO

BACKGROUND: Non-invasive determination of H3 K27 alteration of pediatric brainstem glioma (pedBSG) remains a clinical challenge. PURPOSE: To predict H3 K27-altered pedBSG using amide proton transfer-weighted (APTw) imaging. MATERIAL AND METHODS: This retrospective study included patients with pedBSG who underwent APTw imaging and had the H3 K27 alteration status determined by immunohistochemical staining. The presence or absence of foci of markedly increased APTw signal in the lesion was visually assessed. Quantitative APTw histogram parameters within the entire solid portion of tumors were extracted and compared between H3 K27-altered and wild-type groups using Student's t-test. The ability of APTw for differential diagnosis was evaluated using logistic regression. RESULTS: Sixty pedBSG patients included 48 patients with H3 K27-altered tumor (aged 2-48 years) and 12 patients with wild-type tumor (aged 3-53 years). Visual assessment showed that the foci of markedly increased APTw signal intensity were more common in the H3 K27-altered group than in wild-type group (60% vs. 16%, P = 0.007). Histogram parameters of APTw signal intensity in the H3 K27-altered group were significantly higher than those in the wild-type group (median, 2.74% vs. 2.22%, P = 0.02). The maximum (area under the receiver operating characteristic curve [AUC] = 0.72, P = 0.01) showed the highest diagnostic performance among histogram analysis. A combination of age, median and maximum APTw signal intensity could predict H3 K27 alteration with a sensitivity of 81%, specificity of 75% and AUC of 0.80. CONCLUSION: APTw imaging may serve as an imaging biomarker for H3 K27 alteration of pedBSGs.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/patologia , Prótons , Amidas , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/patologia , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/patologia
19.
Neuroimage ; 250: 118934, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091078

RESUMO

Convolutional neural networks have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). However, the segmentation can still be difficult for challenging WM tracts with thin bodies or complicated shapes; the segmentation is even more problematic in challenging scenarios with reduced data quality or domain shift between training and test data, which can be easily encountered in clinical settings. In this work, we seek to improve the segmentation of WM tracts, especially for challenging WM tracts in challenging scenarios. In particular, our method is based on volumetric WM tract segmentation, where voxels are directly labeled without performing tractography. To improve the segmentation, we exploit the characteristics of WM tracts that different tracts can cross or overlap and revise the network design accordingly. Specifically, because multiple tracts can co-exist in a voxel, we hypothesize that the different tract labels can be correlated. The tract labels at a single voxel are concatenated as a label vector, the length of which is the number of tract labels. Due to the tract correlation, this label vector can be projected into a lower-dimensional space-referred to as the embedded space-for each voxel, which allows the segmentation network to solve a simpler problem. By predicting the coordinate in the embedded space for the tracts at each voxel and subsequently mapping the coordinate to the label vector with a reconstruction module, the segmentation result can be achieved. To facilitate the learning of the embedded space, an auxiliary label reconstruction loss is integrated with the segmentation accuracy loss during network training, and network training and inference are end-to-end. Our method was validated on two dMRI datasets under various settings. The results show that the proposed method improves the accuracy of WM tract segmentation, and the improvement is more prominent for challenging tracts in challenging scenarios.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Substância Branca/diagnóstico por imagem , Conjuntos de Dados como Assunto , Humanos
20.
Mult Scler ; 28(5): 707-717, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34379008

RESUMO

BACKGROUND: Hippocampal involvement may differ between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). OBJECTIVE: To investigate the morphometric, diffusion and functional alterations in hippocampus in MS and NMOSD and the clinical significance. METHODS: A total of 752 participants including 236 MS, 236 NMOSD and 280 healthy controls (HC) were included in this retrospective multi-center study. The hippocampus and subfield volumes, fractional anisotropy (FA) and mean diffusivity (MD), amplitude of low frequency fluctuation (ALFF) and degree centrality (DC) were analyzed, and their associations with clinical variables were investigated. RESULTS: The hippocampus showed significantly lower volume, FA and greater MD in MS compared to NMOSD and HC (p < 0.05), while no abnormal ALFF or DC was identified in any group. Hippocampal subfields were affected in both diseases, though subiculum, presubiculum and fimbria showed significantly lower volume only in MS (p < 0.05). Significant correlations between diffusion alterations, several subfield volumes and clinical variables were observed in both diseases, especially in MS (R = -0.444 to 0.498, p < 0.05). FA and MD showed fair discriminative power between MS and HC, NMOSD and HC (AUC > 0.7). CONCLUSIONS: Hippocampal atrophy and diffusion abnormalities were identified in MS and NMOSD, partly explaining how clinical disability and cognitive impairment are differentially affected.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Neuromielite Óptica/diagnóstico por imagem , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA