RESUMO
A series of acylhydrazone-based N,N-chelate half-sandwich iridium complexes have been synthesized through a facile route in good yields. The dehydrogenation of a series of aromatic and aliphatic primary alcohols to corresponding carboxylic acids has been accomplished catalyzed by the prepared air stable iridium complexes under mild reaction conditions. Carboxylic acids were obtained in high yields under open flask condition with broad substrates and good tolerance to sensitive functional groups. Such a half-sandwich iridium catalyst system exhibited high catalytic activity and stability, and a high TOF of 316.7 h-1 could be achieved with a catalyst loading as low as 0.05 mol %. Furthermore, the sustainable catalyst could be reused at least five times without obviously losing its activity, highlighting its potential application in industry. Molecular structure of iridium complex 1 was confirmed by single-crystal X-ray analysis.
RESUMO
The first successful copper-catalyzed decarboxylative cyclization reaction of ethynylbenzoxazinones and thiols has been developed. A rarely studied α-addition process to a copper-allenylidene intermediate promoted this reaction. Using this protocol, a range of 2-thiomethylene indole compounds have been obtained. This methodology offers significant advantages including mild reaction conditions, cheap catalysts, good yields and broad substrate compatibility.
RESUMO
Anxiety disorder is one of the most common neuropsychiatric disorders, and affects many people's daily activities. Although the pathogenesis and treatments of anxiety disorder have been studied for several decades, the underlying mechanisms remain elusive. Here, we provide evidence that olfactory stimuli with inhaled linalool or 2-phenylethanol decreased mouse anxiety-like behaviors and increased the activities of hippocampal dentate granule cells (DGCs). RNA-sequencing analysis identified retrograde endocannabinoid signaling, which is a critical pathway for mood regulation and neuron activation, is altered in the hippocampus of both linalool- and 2-phenylethanol-exposed mice. Further studies found that selective inhibition of endocannabinoid signaling by injecting rimonabant abolished the activation of DGCs and the anxiolytic effect induced by linalool or 2-phenylethanol. Together, these results uncovered a novel mechanism by which linalool or 2-phenylethanol decreases mouse anxiety-like behaviors and increases DG activity likely through activating hippocampal retrograde endocannabinoid signaling.
Assuntos
Monoterpenos Acíclicos , Ansiedade , Endocanabinoides , Hipocampo , Transdução de Sinais , Animais , Endocanabinoides/metabolismo , Camundongos , Ansiedade/metabolismo , Ansiedade/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Monoterpenos Acíclicos/farmacologia , Odorantes , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Comportamento Animal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Rimonabanto/farmacologiaRESUMO
A new class of N,O-coordinate half-sandwich ruthenium complexes supported by hydrazone ligands with a general formula of [Ru(η6-p-cymene)Cl(L)] have been obtained in moderate to excellent yields conveniently. These air- and moisture-stable ruthenium complexes exhibited excellent catalytic activity in cyanosilylether synthesis under mild reaction conditions. Under the catalysis of ruthenium, various cyanosilylethers with different substituents were obtained through a one-pot reaction of trimethylsilyl cyanide with carbonyl substrates, with good to excellent yields. Excellent catalytic efficiency, a wide substrate range, and mild reaction conditions made this type of ruthenium catalyst have potential for industrial application. All of the half-sandwich ruthenium complexes have been well described by infrared, nuclear magnetic resonance, and EA analysis. Molecular structures of ruthenium complexes 1 and 4 were confirmed by single-crystal X-ray analysis.
RESUMO
Here, we synthesize a series of hydrazone-based N,O-chelate half-sandwich iridium complexes through a facile route. All air-stable iridium complexes show high catalytic activity in N-alkylation of a broad scope of aniline derivatives and alcohols with liberating water as the sole byproduct. This reaction provides a smooth route to synthesize diverse monoalkylated amines in good to excellent yields at moderate temperature with a low catalyst loading. Moreover, the challenging N-alkylation process using nitroarene substrates as coupling partners is also carried out in this catalytic system. The mechanistic study shows that the present iridium catalysis process proceeds through a hydrogen borrowing mechanism. All iridium(III) complexes 1-4 are characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis.
RESUMO
A one-pot catalyst-free reaction of o-hydroxyaryl azomethine ylides, vinyl pyridines and paraformaldehyde for the synthesis of benzopyrroxazines is reported, which offers a straightforward and atom-economical procedure for the preparation of benzopyrroxazine derivatives in moderate to excellent yields under mild conditions. A self-catalyzed [3 + 2] annulation through a mutual activation method and a sequential non-catalyzed [5 + 1] annulation process contribute to this strategy. The corresponding control experiments have been conducted to reveal the mechanism of this reaction.
Assuntos
Alcenos , CatáliseRESUMO
A series of cationic cyclometalated iridium(III) complexes with o-carborane cage on the main ligand of 2-phenylbenzothiazole were synthesized. The prepared iridium complexes (C1-C6) were fully characterized by UV-vis, NMR, and FT-IR spectra. The exact molecular structure of complex C1 was further studied by single crystal X-ray diffraction analysis. The different substitution position of o-carborane on the 2-phenylbenzothiazole ring lead to obvious differences in the emission properties of the synthesized complexes. The o-carboranyl unit results in a bathochromic shift of 10 nm in the fluorescence emission spectrum of C2. In addition, the presence of an o-carborane fragment promoted the strong fluorescence intensity of C1 and C4, which can be used as a tool to effectively boost the intensity of fluorescence properties. The emission fluorescent behavior of iridium(III) complexes can be facilely tuned by structural variations in the main ligands of these materials.
RESUMO
A series of N,O-coordinate iridium(III) complexes with a half-sandwich motif bearing Schiff base ligands for catalytic hydrogenation of nitro and carbonyl substrates have been synthesized. All iridium complexes showed efficient catalytic activity for the hydrogenation of ketones, aldehydes, and nitro-containing compounds using clean H2 as reducing reagent. The iridium catalyst displayed the highest TON values of 960 and 950 in the hydrogenation of carbonyl and nitro substrates, respectively. Various types of substrates with different substituted groups afforded corresponding products in excellent yields. All N,O-coordinate iridium(III) complexes 1-4 were well characterized by IR, NMR, HRMS, and elemental analysis. The molecular structure of complex 1 was further characterized by single-crystal X-ray determination.
RESUMO
Forensic entomology provides a feasible way to estimate postmortem interval (PMI), of which the growth and development of sarcosaprophagous insects is the most widely used indicator in forensic practice. Over the years, forensic entomologists have carried out a large number of studies on the development biology of sarcosaprophagous insects. This paper illustrates the main factors that affect the development of sarcosaprophagous insects, including temperature, humidity, light, food types and poisons. The development indicators of sarcosaprophagous insects were reviewed from the perspectives of morphology, differential gene expression and biochemical characteristics. It is emphasized that future research of development biology on sarcosaprophagous insects should fully absorb and integrate the methods of artificial intelligence and omics, and the research object also needs further expansion in order to establish a more objective and more accurate PMI estimation method.
Assuntos
Dípteros , Entomologia , Animais , Inteligência Artificial , Biologia do Desenvolvimento , Insetos , Mudanças Depois da MorteRESUMO
Several types of air-stable N,O-coordinate half-sandwich iridium complexes containing Schiff base ligands with the general formula [Cp*IrClL] were synthesized in good yields. These stable iridium complexes displayed a good catalytic efficiency in amide synthesis. A variety of amides with different substituents were obtained in a one-pot procedure with excellent yields and high selectivities through the amidation of aldehydes with NH2OH·HCl and nitrile hydration under the catalysis of complexes 1-4. The excellent and diverse catalytic activity, mild conditions, broad substance scope, and environmentally friendly solvent make this system potentially applicable in industrial production. Half-sandwich iridium complexes 1-4 were characterized by NMR, elemental analysis, and IR techniques. Molecular structures of complexes 2 and 3 were confirmed by single-crystal X-ray analysis.
RESUMO
Palladium-catalyzed double-Suzuki-Miyaura couplings between cyclic dibenziodoniums and arylboronic acids have been developed. As such, a wide range of o-tetraaryls were synthesized in good to excellent yields of 22-94%. Furthermore, tetraphenylene was prepared in 21% isolated yield with 2,2'-biphenyldiboronic acid by using this method.
RESUMO
Background: The systemic immune-inflammation index (SII) showed an extensive link between immunological dysfunction and the activation of systemic inflammation. Several studies have confirmed the application of SII to orthopedic diseases. However, the significance of SII in critically ill elderly individuals with hip fracture who require intensive care unit (ICU) admission is not yet known. This study centered on exploring the relationship between SII and clinical outcomes among critically ill elderly hip fracture individuals. Methods: The study centered around elderly patients experiencing severe illness following hip fractures and requiring admission to the ICU. These patients from the MIMIC-IV database formed the basis of this study's cohort. We stratified them into quartiles according to their SII levels. The results involved the mortality at 30 days and 1 year post-admission. Then we employ Cox proportional hazards regression analysis as well as restricted cubic splines to explore the association between the SII and clinical results in critically ill elderly patients with hip fracture. Results: The study encompassed 991 participants, among whom 63.98% identified as females. Notably, the mortality rates attributed to any cause within 30 days and 1 year after hospitalization stood at 19.68 and 33.40%, respectively. The multivariate Cox proportional hazards model disclosed a significant correlation between an elevated SII and all-cause mortality. Following adjustments for confounding variables, individuals with a high SII showed a notable correlation with 30-day mortality [adjusted hazard ratio (HR), 1.065; 95% confidence interval (CI), 1.044-1.087; p < 0.001] and 1-year mortality (adjusted HR, 1.051; 95% CI, 1.029-1.074; p < 0.001). Furthermore, the analysis of restricted cubic splines demonstrated a progressive increase in the risk of all-cause death as the SII value rose. Conclusion: Among critically ill elderly patients with hip fracture, the SII exhibits a non-linear association that positively correlates with both 30-day and 1-year all-cause mortality rates. The revelation indicates that the SII may play a vital role in identifying patients with hip fractures who face an escalated risk of mortality due to any cause.
RESUMO
Objective: China is among the 30 countries with a high burden of tuberculosis (TB) worldwide, and TB remains a public health concern. Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China. However, molecular epidemiological studies of Kashgar are lacking. Methods: A population-based retrospective study was conducted using whole-genome sequencing (WGS) to determine the characteristics of drug resistance and the transmission patterns. Results: A total of 1,668 isolates collected in 2020 were classified into lineages 2 (46.0%), 3 (27.5%), and 4 (26.5%). The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid (7.4%, 124/1,668), streptomycin (6.0%, 100/1,668), and rifampicin (3.3%, 55/1,668). The rate of rifampicin resistance was 1.8% (23/1,290) in the new cases and 9.4% (32/340) in the previously treated cases. Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains, respectively: 18.6% vs. 8.7 or 9%, P < 0.001. The estimated proportion of recent transmissions was 25.9% (432/1,668). Multivariate logistic analyses indicated that sex, age, occupation, lineage, and drug resistance were the risk factors for recent transmission. Despite the low rate of drug resistance, drug-resistant strains had a higher risk of recent transmission than the susceptible strains (adjusted odds ratio, 1.414; 95% CI, 1.023-1.954; P = 0.036). Among all patients with drug-resistant tuberculosis (DR-TB), 78.4% (171/218) were attributed to the transmission of DR-TB strains. Conclusion: Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Rifampina/farmacologia , Estudos Retrospectivos , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , MutaçãoRESUMO
A novel and sensitive enhanced chemiluminescence enzyme-linked immunosorbent assay (ECL-ELISA) for the simultaneous analysis of imidaclothiz and thiacloprid is described. The concentrations of coating antibodies and enzyme tracers were optimised by three different ECL-ELISA formats. Under the optimised conditions, when anti-imidaclothiz polyclonal and anti-thiacloprid polyclonal antibodies were immobilised in a single well, single-enzyme tracer ECL-ELISA was used to screen the corresponding pesticide residue, and multi-enzyme tracer ECL-ELISA was used for the analysis of imidaclothiz and thiacloprid residue mixtures. The average recoveries of the two pesticides from spiked tomato, cabbage, and rice samples were in the range of 83.7-117%. Meanwhile, the results showed that the multi-enzyme tracer ECL-ELISA could be applied to the accurate analysis of different proportions of imidaclothiz and thiacloprid (1 : 4 to 4 : 1, m/m) when the gross residues ranged from 20 to 250 µg kg(-1). The results of the multi-enzyme tracer ECL-ELISA in the real tomato samples correlated well with those of high-performance liquid chromatography, with a correlation coefficient of 0.996. Therefore, this new strategy for developing immunoassays is suitable for the simultaneous quantitative detection of imidaclothiz and thiacloprid residues in agricultural samples.
Assuntos
Agricultura , Ensaio de Imunoadsorção Enzimática/métodos , Medições Luminescentes/métodos , Praguicidas/análise , Piridinas/análise , Tiazinas/análise , Tiazóis/análise , Anticorpos/imunologia , Cromatografia Líquida de Alta Pressão , Neonicotinoides , Fatores de TempoRESUMO
BACKGROUND: The aim of this research was to study whether transplantation of mesenchymal stem cells (MSCs) overexpressing microRNA-1 into mouse infarcted myocardium can enhance cardiac myocyte differentiation and improve cardiac function efficiently. METHODS: Eight-week-old female C57BL/6 mice underwent ligation of the left coronary artery to produce models of myocardial infarction. The ligated animals were randomly divided into 4 groups (20 in each). One week later, they were intramyocardially injected at the heart infarcted zone with microRNA-1-transduced MSCs (MSC(miR-1) group), mock-vector-transduced MSCs (MSC(null) group), MSCs (MSC group) or medium (PBS group). At 4 weeks post-transplantation, transthoracic echocardiographic assessment, histological evaluation and Western blot were performed. RESULTS: The transplanted MSCs were able to differentiate into cardiomyocytes in the infarcted zone. Cardiac function in the MSC, MSC(null) and MSC(miR-1) groups was significantly improved compared to the PBS group (p < 0.01 or p < 0.001). However, treatment of MSCs expressing microRNA-1 was more effective for cardiac repair and improved cardiac function more efficiently by enhancing cell survival and cardiac myocyte differentiation compared to the MSC group or the MSC(null) groups (p < 0.05 or p < 0.01, respectively). CONCLUSIONS: Transplantation of microRNA-1-transfected MSCs was more conducive to repair of infarct injury and improved heart function by enhancing transplanted cells survival and cardiomyogenic differentiation.
Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/metabolismo , Infarto do Miocárdio/terapia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Hipóxia Celular/fisiologia , Vasos Coronários , Modelos Animais de Doenças , Feminino , Sobrevivência de Enxerto , Injeções Intralesionais , Ligadura , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/farmacologia , Contração Miocárdica/fisiologia , Fenótipo , Distribuição Aleatória , TransfecçãoRESUMO
A series of pyrazole-based ligands and their corresponding cationic N,S-chelate half-sandwich iridium complexes were successfully synthesized. All iridium complexes exhibited good anticancer activity against the MCF-7 and MDA-MB-231 human breast cancer cells. The cytotoxic activity of unsubstituted iridium complex 1 is greater than that of cisplatin against MCF-7 cells. In addition, the cationic half-sandwich iridium complexes are also efficient in antiplasmodial study and complex 1 displayed the best activity as its IC50 was observed to be approximately 0.11 µM against the CQS-NF54 strain. These iridium complexes generally exhibited enhanced activity against the CQS-NF54 strain in comparison with that against the CQR-K1 strain. An "IC50 speed assay" investigation against the CQS-NF54 strain indicated complexes 1-3 to be fast-acting complexes that reach their lowest IC50 values within 16 hours. All complexes were fully characterized by IR spectroscopy, NMR spectroscopy, and elemental analysis, and the structure of the iridium complex was confirmed by single-crystal X-ray diffraction.
RESUMO
A series of hydrazone-based N,O-chelate half-sandwich iridium complexes were synthesized through a facile route with good yields. These air- and moisture-stable iridium complexes exhibited excellent catalytic activity in the cyanosilylether synthesis under mild reaction conditions. Under the catalysis of iridium, various cyanosilylethers with different substituents were obtained through a one-pot reaction of trimethylsilyl cyanide (TMSCN) with carbonyl substrates, with good to excellent yields. The excellent catalytic efficiency, wide substrate range, and mild reaction conditions made this type of iridium catalyst have the potential for industrial applications. All the half-sandwich iridium complexes were well characterized by IR, NMR, and EA analyses. The molecular structure of iridium complex 1 was confirmed by single-crystal X-ray analysis.
RESUMO
Background: Skin regeneration is a challenging issue worldwide. Increasing research has highlighted the role of immune cells in healing and the underlying regulatory mechanism. The purpose of this study was to identify the hotspots and trends in skin regeneration and inflammation research through bibliometrics and to provide insights into the future development of fundamental research and disease treatment. Methods: Publications were collected from the Web of Science Core Collection on March 1, 2022. Articles and reviews published in English from January 1, 1999, to December 31, 2022, were selected, and statistical analyses of countries, institutions, authors, references, and keywords were performed using VOSviewer 1.6.18 and CiteSpace 5.8. Results: A total of 3,894 articles and reviews were selected. The number of publications on skin inflammation and regeneration showed an increasing trend over time. Additionally, authors and institutions in the United States, United Kingdom, Canada, and China appeared to be at the forefront of research in the field of skin inflammation and regeneration. Werner Sabine published some of the most cited papers. Wound Repair and Regeneration was the most productive journal, while Journal of Investigative Dermatology was the most cited journal. Angiogenesis, diamonds, collagen, cytokine, and keratinocytes were the five most commonly used keywords. Conclusion: The number of publications on skin inflammation and regeneration show an increasing trend. Moreover, a series of advanced technologies and treatments for skin regeneration, such as exosomes, hydrogels, and wound dressings, are emerging, which will provide precise information for the treatment of skin wounds. This study can enhance our understanding of current hotspots and future trends in skin inflammation and regeneration research, as well as provide guidelines for fundamental research and clinical treatment.
RESUMO
OBJECTIVE: AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering. METHODS: To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses. RESULTS: One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses. CONCLUSION: This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.
Assuntos
Isatis , Ácido Abscísico , Isatis/genética , Família Multigênica , Filogenia , Proteínas de Homeodomínio/genética , Genoma de PlantaRESUMO
Background There are limited data on low-density lipoprotein cholesterol (LDL-C) goal achievement per the 2019 European Society of Cardiology/European Atherosclerosis Society dyslipidemia management guidelines and its impact on long-term outcomes in patients undergoing coronary artery bypass grafting (CABG). We investigated the association between LDL-C levels attained 1 year after CABG and the long-term outcomes. Methods and Results A total of 2072 patients diagnosed with multivessel coronary artery disease and undergoing CABG between 2011 and 2020 were included. Patients were categorized by lipid levels at 1 year after CABG, and the occurrence of major adverse cardiovascular and cerebrovascular events (MACCEs) was evaluated. The goal of LDL-C <1.40 mmol/L was attained in only 310 patients (14.9%). During a mean follow-up of 4.2 years after the index 1-year assessment, 25.0% of the patients experienced MACCEs. Multivariable-adjusted hazard ratios (95% CIs) for MACCEs, cardiac death, nonfatal myocardial infarction, nonfatal stroke, revascularization, and cardiac rehospitalization were 1.94 (1.41-2.67), 2.27 (1.29-3.99), 2.45 (1.55-3.88), 1.17 (0.63-2.21), 2.47 (1.31-4.66), and 1.87 (1.19-2.95), respectively, in patients with LDL-C ≥2.60 mmol/L, compared with patients with LDL-C <1.40 mmol/L. The LDL-C levels at 1-year post-CABG were independently associated with long-term MACCEs. Conclusions This retrospective analysis demonstrates that lipid goals are not attained in the vast majority of patients at 1 year after CABG, which is independently associated with the increased risk of long-term MACCEs. Further prospective, multicenter studies are warranted to validate if intensive lipid management could improve the outcomes of patients undergoing CABG.