Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Robot ; 11(1): 157-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819714

RESUMO

The remarkable interaction capabilities of soft robots within various environments have captured substantial attention from researchers. In recent years, bionics has provided a rich inspiration for the design of soft robots. Nevertheless, predicting the locomotion of soft actuators and determining material layouts solely based on intuition or experience remain a formidable challenge. Previous actuators predominantly targeted separate applications, leading to elevated costs and diminished interchangeability. The objective of this article is to extract the common requirements of diverse application domains and develop a versatile compliant actuator. A mathematical model of the compliant mechanism is proposed under the framework of topology optimization, resulting in an optimal distribution of both structure and material. Through comparison with empirical and semioptimal designs, the results show that the proposed versatile actuator has the advantages of both stiffness and flexibility. We propose an associative design strategy for soft grippers and walking robots. The soft gripper can perfectly complete adaptive grasping of objects with varying sizes, shapes, and masses. The successful in-water gripping experiment underscores the robust cross-medium operational capabilities of the soft gripper. Notably, our experimental results show that the walking robot can move quickly for 5 cycles in 8.25 s and can guarantee the control accuracy of continuous motion. Moreover, the robot swiftly switches walking directions within a mere 0.45 s. The optimization and design strategy presented in this article can furnish novel insights for shaping the next generation of soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA