Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585823

RESUMO

Obesity is a metabolic disorder that results from complex interactions between genetic predisposition and dietary factors. Interleukin-4 (IL-4), besides its role in immunity, has metabolic effects on insulin efficacy. We studied the effects of IL-4 on metabolic abnormalities in a mice model of obesity involving leptin deficiency and leptin resistance. Leptin-deficient 145E and leptin-resistant high-fat diet (HFD) mice showed lower levels of circulating IL-4. 145E and HFD mice showed a number of abnormalities: Obesity, hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia, liver injury, and adiposity with concurrent inflammation, decreases in Akt, signal transducer and activator of transcription 3 (STAT3), and STAT6 phosphorylation in the hypothalamus, liver, and epididymal fat. Independent of leptin-deficient obesity and dietary obesity, a course of 8-week IL-4 supplementation improved obesity and impairment in Akt, STAT3, and STAT6 signaling. Amelioration of cytokine expression, despite variable extents, was closely linked with the actions of IL-4. Additionally, the browning of white adipocytes by IL-4 was found in epididymal white adipose tissues and 3T3-L1 preadipocytes. Chronic exercise, weight management, and probiotics are recommended to overweight patients and IL-4 signaling is associated with clinical improvement. Thus, IL-4 could be a metabolic regulator and antiobesity candidate for the treatment of obesity and its complications.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamação/prevenção & controle , Interleucina-4/farmacologia , Leptina/deficiência , Doenças Metabólicas/prevenção & controle , Obesidade/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Animais , Inflamação/etiologia , Resistência à Insulina , Masculino , Doenças Metabólicas/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia
2.
Small ; 15(49): e1903296, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709707

RESUMO

Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA-200 (miR-200) has been reported to inhibit metastasis in cancer cells. Herein, pH-sensitive and peptide-modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR-200, respectively. These peptides include one cell-penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria-targeting peptide. The peptide-modified nanoparticles are further coated with a pH-sensitive PEG-lipid derivative with an imine bond. These specially-designed nanoparticles exhibit pH-responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR-200 by SLN further increases the cytotoxicity of irinotecan-loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/ß-catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC-bearing mice, the in vivo results further indicate that irinotecan and miR-200 in pH-responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate ß-catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH-responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Irinotecano/uso terapêutico , MicroRNAs/administração & dosagem , MicroRNAs/uso terapêutico , Nanopartículas/química , Animais , Apoptose/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Endocitose/fisiologia , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio , Marcação In Situ das Extremidades Cortadas , Irinotecano/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
3.
J Nanobiotechnology ; 17(1): 89, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426807

RESUMO

BACKGROUND: The emergence of resistance to chemotherapy or target therapy, tumor metastasis, and systemic toxicity caused by available anticancer drugs hamper the successful colorectal cancer (CRC) treatment. The rise in epidermal growth factor receptor (EGFR; human epidermal growth factor receptor 1; HER1) expression and enhanced phosphorylation of HER2 and HER3 are associated with tumor resistance, metastasis and invasion, thus resulting in poor outcome of anti-CRC therapy. The use of afatinib, a pan-HER inhibitor, is a potential therapeutic approach for resistant CRC. Additionally, miR-139 has been reported to be negatively correlated with chemoresistance, metastasis, and epithelial-mesenchymal transition (EMT) of CRC. Hence, we develop a nanoparticle formulation consisting of a polymer core to carry afatinib or miR-139, which is surrounded by lipids modified with a targeting ligand and a pH-sensitive penetrating peptide to improve the anticancer effect of cargos against CRC cells. RESULTS: Our findings show that this formulation displays a spherical shape with core/shell structure, homogeneous particle size distribution and negative zeta potential. The prepared formulations demonstrate a pH-sensitive release profile and an enhanced uptake of cargos into human colorectal adenocarcinoma Caco-2 cells in response to the acidic pH. This nanoparticle formulation incorporating afatinib and miR-139 exhibits low toxicity to normal cells but shows a better inhibitory effect on Caco-2 cells than other formulations. Moreover, the encapsulation of afatinib and miR-139 in peptide-modified nanoparticles remarkably induces apoptosis and inhibits migration and resistance of Caco-2 cells via suppression of pan-HER tyrosine kinase/multidrug resistance/metastasis pathways. CONCLUSION: This study proposes a multifunctional nanoparticle formulation for targeted modulation of apoptosis/EGFR/HER/EMT/resistance/progression pathways to increase the sensitivity of colon cancer cells to afatinib.


Assuntos
Afatinib/química , Antineoplásicos/química , Lipídeos/química , MicroRNAs/química , Nanopartículas/química , Peptídeos/química , Polímeros/química , Afatinib/farmacologia , Afatinib/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Sprague-Dawley
4.
Int J Mol Sci ; 17(12)2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27916828

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib, have been demonstrated to effectively treat the patients of extracranial non-small cell lung cancer (NSCLC). However, these patients often develop brain metastasis (BM) during their disease course. The major obstacle to treat BM is the limited penetration of anticancer drugs across the blood-brain barrier (BBB). In the present study, we utilized gefitinib-loaded liposomes with different modifications to improve gefitinib delivery across the in vitro BBB model of bEnd.3 cells. Gefitinib was encapsulated in small unilamellar liposomes modified with glutathione (GSH) and Tween 80 (SUV-G+T; one ligand plus one surfactant) or RF (SUV-RF; one α-helical cell-penetrating peptide). GSH, Tween 80, and RF were tested by the sulforhodamine B (SRB) assay to find their non-cytotoxic concentrations on bEnd.3 cells. The enhancement on gefitinib across the BBB was evaluated by cytotoxicity assay on human lung adenocarcinoma PC9 cells under the bEnd.3 cells grown on the transwell inserts. Our findings showed that gefitinib incorporated in SUV-G+T or SUV-RF across the bEnd.3 cells significantly reduced the viability of PC9 cells more than that of free gefitinib. Furthermore, SUV-RF showed no cytotoxicity on bEnd.3 cells and did not affect the transendothelial electrical resistance (TEER) and transendothelial permeability of sodium fluorescein across the BBB model. Moreover, flow cytometry and confocal laser scanning microscopy were employed to evaluate the endocytosis pathways of SUV-RF. The results indicated that the uptake into bEnd.3 cells was mainly through adsorptive-mediated mechanism via electrostatic interaction and partially through clathrin-mediated endocytosis. In conclusion, cell penetrating peptide-conjugated SUV-RF shed light on improving drug transport across the BBB via modulating the transcytosis pathway(s).


Assuntos
Barreira Hematoencefálica/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Glutationa/química , Lipossomos/química , Polissorbatos/química , Quinazolinas/química , Quinazolinas/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Gefitinibe , Humanos , Neoplasias Pulmonares/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Quinazolinas/farmacologia
5.
Int J Mol Sci ; 16(9): 22711-34, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393585

RESUMO

This study aims to explore the effects and mechanisms of hepcidin, a potential antimicrobial peptide from Tilapia, and epirubicin (Epi), an antineoplastic agent, on the generation of reactive oxygen species (ROS) and link the ROS levels to the reversal mechanisms of multidrug resistance (MDR) by epirubicin and hepcidin in human squamous cell carcinoma SCC15 and human embryonal carcinoma NT2D1 cells. The cells, pretreated with hepcidin, epirubicin, or a combination of these compounds in PEGylated liposomes, were used to validate the molecular mechanisms involved in inhibiting efflux transporters and inducing apoptosis as evaluated by cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of this combination. We found that hepcidin significantly enhanced the cytotoxicity of epirubicin in liposomes. The co-incubation of epirubicin with hepcidin in liposomes intensified the ROS production, including hydrogen peroxide and superoxide free radicals. Hepcidin significantly increased epirubicin intracellular uptake into NT2D1 and SCC15 cells, as supported by the diminished mRNA expressions of MDR1, MDR-associated protein (MRP) 1, and MRP2. Hepcidin and/or epirubicin in liposomes triggered apoptosis, as verified by the reduced mitochondrial membrane potential, increased sub-G1 phase of cell cycle, incremental populations of apoptosis using annexin V/PI assay, and chromatin condensation. As far as we know, this is the first example showing that PEGylated liposomal TH1-5 and epirubicin gives rise to cell death in human squamous carcinoma and testicular embryonic carcinoma cells through the reduced epirubicin efflux via ROS-mediated suppression of P-gp and MRPs and concomitant initiation of mitochondrial apoptosis pathway. Hence, hepcidin in PEGylated liposomes may function as an adjuvant to anticancer drugs, thus demonstrating a novel strategy for reversing MDR.


Assuntos
Anti-Infecciosos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Epirubicina/farmacologia , Hepcidinas/farmacologia , Neoplasias Testiculares/tratamento farmacológico , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacocinética , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Epirubicina/administração & dosagem , Epirubicina/farmacocinética , Hepcidinas/administração & dosagem , Hepcidinas/farmacocinética , Humanos , Lipossomos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Testiculares/metabolismo , Tilápia
6.
Int J Biol Macromol ; 254(Pt 2): 127905, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939778

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a significant obstacle to lowering global cancer deaths. CB-5083, a novel valosin-containing protein (VCP)/p97 inhibitor that disrupts proteasomal degradation and induces endoplasmic reticulum stress (ERS) accumulation, was evaluated as an inducer of immunogenic cell death (ICD) in PDAC treatment. Furthermore, miR-142 enhances checkpoint blockade and promotes M1 repolarization, while Toll-like receptor 7/8 agonist resiquimod (R) acts as an immunoadjuvant to amplify the immune response to miR-142. This research signifies the first integration of CB, miR-142, and R in solid lipid nanoparticles (SLNs) modified with peptides targeting PD-L1, EGFR, and ER, which were shelled by the PEG-polyglutamic (PGA) coating that detaches in response to the acidic pH values in the tumor microenvironment (TME). The modified SLNs exhibited pH-sensitive cytotoxicity against Panc-02 cells, preserving normal cells and preventing hemolysis. The innovative approach simultaneously modulated pathways, including VCP/Bip/K48-Ub/ATF6, IRE1α/XBPs/LC3II, PD-L1/TGF-ß/IL-10/CD206/MSR1/Arg1, and TNF-α/IFN-γ/IL-6/iNOS/COX-2. Combined treatment blocked VCP, arrested the cell cycle, inhibited EMT, triggered ERS-mediated autophagy/apoptosis, and stimulated robust ICD via the release of damage-associated molecular patterns. This adaptable nanoformulation, displaying pH-sensitive PEG-PGA de-coating and precisely targeting EGFR, PD-L1, and ER, serves to hinder EMT and immune evasion, subsequently amplifying ICD in PDAC cells and the TME.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Antígeno B7-H1 , Adjuvantes Imunológicos , Microambiente Tumoral , Endorribonucleases , Proteínas Serina-Treonina Quinases/metabolismo , Estresse do Retículo Endoplasmático , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Receptores ErbB , Linhagem Celular Tumoral
7.
Biomed Pharmacother ; 175: 116660, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701563

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-ß/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.


Assuntos
Imunoterapia , Nanopartículas , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Humanos , Imunoterapia/métodos , Camundongos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Antígeno B7-H1/antagonistas & inibidores , Sistemas de Liberação de Fármacos por Nanopartículas/química , Feminino , Polietilenoglicóis/química , Inibidores de Checkpoint Imunológico/farmacologia , Lipossomos
8.
Int J Mol Sci ; 15(1): 342-60, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24384838

RESUMO

Temperature sensitive Pluronic (Plu) and pH-sensitive polyacrylic acid (PAA) were successfully mixed in different ratios to form in situ gelling formulations for colon cancer therapy. The major formulations were prepared as the liquid and solid suppository dosage forms. Epirubicin (Epi) was chosen as a model anticancer drug. In vitro characterization and in vivo pharmacokinetics and therapeutic efficacy of Epi in six Plu/PAA formulations were evaluated. Our in vitro data indicate that Epi in Plu 14%/PAA 0.75% of both solid and liquid suppositories possess significant cytotoxicity, strong bioadhesive force, long-term appropriate suppository base, sustained release, and high accumulation of Epi in rat rectums. These solid and liquid suppositories were retained in the upper rectum of Sprague-Dawley (SD) rats for at least 12 h. An in vivo pharmacokinetic study using SD rats showed that after rectal administration of solid and liquid suppositories, Epi had greater area under the curve and higher relative bioavailability than in a rectal solution. These solid and liquid suppositories exhibited remarkable inhibition on the tumor growth of CT26 bearing Balb/c mice in vivo. Our findings suggest that in situ thermogelling and mucoadhesive suppositories demonstrate a great potential as colon anticancer delivery systems for protracted release of chemotherapeutic agents.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Epirubicina/farmacocinética , Géis/química , Resinas Acrílicas/química , Administração Retal , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Epirubicina/administração & dosagem , Epirubicina/farmacologia , Meia-Vida , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poloxâmero/química , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo
9.
J Nutr Biochem ; 122: 109457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797731

RESUMO

Obesity is associated with accumulation of inflammatory immune cells in white adipose tissue, whereas thermogenic browning adipose tissue is inhibited. Dietary fatty acids are important nutritional components and several clinical and experimental studies have reported beneficial effects of docosahexaenoic acid (DHA) on obesity-related metabolic changes. In this study, we investigated effects of DHA on hepatic and adipose inflammation and adipocyte browning in high-fat diet-induced obese C57BL/6J mice, and in vitro 3T3-L1 preadipocyte differentiation. Since visceral white adipose tissue has a close link with metabolic abnormality, epididymal adipose tissue represents current target for evaluation. A course of 8-week DHA supplementation improved common phenotypes of obesity, including improvement of insulin resistance, inhibition of macrophage M1 polarization, and preservation of macrophage M2 polarization in hepatic and adipose tissues. Moreover, dysregulated adipokines and impaired thermogenic and browning molecules, considered obesogenic mechanisms, were improved by DHA, along with parallel alleviation of endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and mitochondrial DNA stress-directed innate immunity. During 3T3-L1 preadipocytes differentiation, DHA treatment decreased lipid droplet accumulation and increased the levels of thermogenic, browning, and mitochondrial biogenesis molecules. Our study provides experimental evidence that DHA mitigates obesity-associated inflammation and induces browning of adipose tissue in visceral epididymal adipose tissue. Since obesity is associated with metabolic abnormalities across tissues, our findings indicate that DHA may have potential as part of a dietary intervention to combat obesity.


Assuntos
Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Adipócitos , Tecido Adiposo Branco/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Termogênese
10.
Int J Mol Sci ; 14(1): 158-76, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23344026

RESUMO

In this study, we evaluated the effects of 8-hydroxydaidzein (8HD), an isoflavone isolated from fermented soy germ koji, and epirubicin (Epi), an antineoplastic agent, on the production of reactive oxygen species (ROS). We subsequently correlated the ROS levels to the anticancer mechanisms of Epi and 8HD in human colon adenocarcinoma Caco-2 cells. 8HD enhanced cytotoxicity of Epi and generated a synergistic effect. Epi and/or 8HD treatments increased the hydrogen peroxide( )and( )superoxide levels. Combined treatment markedly decreased mRNA expression levels of multidrug resistance protein 1 (MDR1), MDR-associated protein (MRP) 1, and MRP2. 8HD significantly intensified Epi intracellular accumulation in Caco-2 cells. 8HD and/or Epi-induced apoptosis, as indicated by the reduced mitochondrial membrane potential and increased sub-G1 phase in cell cycle. Moreover, 8HD and Epi significantly enhanced the mRNA expressions of Bax, p53, caspases-3, -8, and -9. To our best knowledge, this study verifies for the first time that 8HD effectively circumvents MDR in Caco-2 cells through the ROS-dependent inhibition of efflux transporters and p53-mediated activation of both death receptor and mitochondrial pathways of apoptosis. Our findings of 8HD shed light on the future search for potential biotransformed isoflavones to intensify the cytotoxicity of anticancer drugs through simultaneous reversal of pump and nonpump resistance.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Epirubicina/uso terapêutico , Isoflavonas/uso terapêutico , Adenocarcinoma/genética , Células CACO-2 , Caspases/genética , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Fragmentação do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Epirubicina/química , Epirubicina/farmacologia , Fase G1/efeitos dos fármacos , Fase G1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Isoflavonas/química , Isoflavonas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Biológicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Acta Biomater ; 153: 465-480, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115656

RESUMO

Prospective tumor pH-responsive and charge-convertible nanoparticles have been utilized to reduce side effects and improve the active tumor-targeting ability and nuclear/cytoplasmic localization of chemo- and gene therapeutics for the treatment of head and neck cancer (HNC). Oxaliplatin (Oxa) is a third-generation platinum compound that prevents DNA replication. miR-320 may regulate cancer cell apoptosis, resistance, and progression. Innovative nanoparticles incorporating miR-320 and Oxa were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The nanoparticles were coated with a charge/size-tunable shield to prevent peptide degradation and decoated at acidic tumor sites to expose peptides for active targeting. Results indicated that the designed nanoparticles exhibited a uniform size and satisfactory drug encapsulation efficiency. The nanoparticles displayed the pH-responsive release and uptake of Oxa and miR-320 into human tongue squamous carcinoma SAS cells. The nanoparticles successfully delivered Oxa and miR-320 to the nucleus and cytoplasm, respectively. This work is the first to demonstrate the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3ß/FOXM1/ß-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit the growth, progression, and multidrug resistance of cancer cells. In SAS-bearing mice, co-treatment with Oxa- and miR-320-loaded nanoparticles exhibited superior antitumor efficacy and remarkably decreased Oxa-associated toxicities. The nucleus/cytoplasm-localized nanoparticles with a tumor pH-sensitive and size/charge-adjustable coating may be a useful combinatorial spatiotemporal nanoplatform for nucleic acids and chemotherapeutics to achieve maximum therapeutic safety and efficacy against HNC. STATEMENT OF SIGNIFICANCE: Innovative nanoparticles incorporating miR-320 and oxaliplatin were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The tumor pH-sensitive and charge/size-adjustable shield of polyglutamic acid-PEG protected against peptide degradation during systemic circulation. This work represents the first example of the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3ß/FOXM1/ß-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit cancer cell growth, cancer cell progression, and multidrug resistance simultaneously. The versatile nanoparticles with a tumor pH-functionalized coating could deliver chemotherapeutics and miRNA to the nucleus/cytoplasm. The nanoparticles successfully reduced chemotherapy-associated toxicities and maximized the antitumor efficacy of combinatorial therapy against head and neck cancer.


Assuntos
Peptídeos Penetradores de Células , Neoplasias de Cabeça e Pescoço , MicroRNAs , Nanopartículas , Humanos , Camundongos , Animais , Oxaliplatina/farmacologia , MicroRNAs/genética , beta Catenina , Vimentina , Glicogênio Sintase Quinase 3 beta , Peptídeos Penetradores de Células/química , Proteínas Proto-Oncogênicas c-akt , Ligantes , Fosfatidilinositol 3-Quinases , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras) , Concentração de Íons de Hidrogênio , Nanopartículas/química , Citoplasma , Serina-Treonina Quinases TOR , Caderinas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos
12.
Pharmaceutics ; 14(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145507

RESUMO

Dysregulational EGFR, KRAS, and mTOR pathways cause metabolic reprogramming, leading to progression of gastric cancer. Afatinib (Afa) is a broad-spectrum tyrosine kinase inhibitor that reduces cancer growth by blocking the EGFR family. MicroRNA 125 (miR-125) reportedly diminishes EGFRs, glycolysis, and anti-apoptosis. Here, a one-shot formulation of miR-125 and Afa was presented for the first time. The formulation comprised solid lipid nanoparticles modified with mitochondrial targeting peptide and EGFR-directed ligand to suppress pan-ErbB-facilitated epithelial-mesenchymal transition and mTOR-mediated metabolism discoordination of glycolysis-glutaminolysis-lipids. Results showed that this cotreatment modulated numerous critical proteins, such as EGFR/HER2/HER3, Kras/ERK/Vimentin, and mTOR/HIF1-α/HK2/LDHA pathways of gastric adenocarcinoma AGS cells. The combinatorial therapy suppressed glutaminolysis, glycolysis, mitochondrial oxidative phosphorylation, and fatty acid synthesis. The cotreatment also notably decreased the levels of lactate, acetyl-CoA, and ATP. The active involvement of mitophagy supported the direction of promoting the apoptosis of AGS cells, which subsequently caused the breakdown of tumor-cell homeostasis and death. In vivo findings in AGS-bearing mice confirmed the superiority of the anti-tumor efficacy and safety of this combination nanomedicine over other formulations. This one-shot formulation disturbed the metabolic reprogramming; alleviated the "Warburg effect" of tumors; interrupted the supply of fatty acid, cholesterol, and triglyceride; and exacerbated the energy depletion in the tumor microenvironment, thereby inhibiting tumor proliferation and aggressiveness. Collectively, the results showed that the two-in-one nanoparticle formulation of miR-125 and Afa was a breakthrough in simplifying drug preparation and administration, as well as effectively inhibiting tumor progression through the versatile targeting of pan-ErbB- and mTOR-mediated mitochondrial dysfunction and dysregulated metabolism.

13.
Biomedicines ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36289868

RESUMO

Our previous studies demonstrated that collapsin response mediator protein 2 (CRMP2) is associated with obesity and, in addition, that hyperglycemia-suppressed CRMP2 augments malignant traits of colorectal cancer and is associated with advanced tumor stage. Regulation of CRMP2 profile was further explored in this study using 3T3-L1 pre-adipocyte adipogenesis as a study model for illustrating the roles of CRMP2 in metabolic homeostasis. Hyperglycemia inhibited expression of CRMP2, adipogenic machinery and adipocyte markers. CRMP2 displayed f-CRMP2 (62~66 kDa) and s-CMRP2 (58 kDa) isoforms at the growth arrest phase. Expression of s-CRMP2 was coupled with the mitotic clonal expansion (MCE) phase to direct cell proliferation and rapidly down-regulated in post-mitotic cells. In the late differentiation phase, f-CRMP2 was co-localized with tubulin in the cortical area. Insulin-enhanced CRMP2-glucose transporter 4 (GLUT4) co-localization and CRMP2 puncta on lipid droplets (LDs) suggested participation of CRMP2 in GLUT4 translocation and LD fusion. Collectively, the CRMP2 functional profile must be finely controlled to adjust cytoskeletal stability for meeting dynamic cellular needs. Manipulating the s-CRMP2/f-CRMP2 ratio and thus the cytoskeleton dynamics is anticipated to improve glucose uptake and insulin sensitivity. In summary, our data provide molecular evidence explaining the functions of CRMP2 in physiological, pathological and disease progression in metabolic homeostasis and disorders related to metabolic abnormalities, including cancer.

14.
Cells ; 11(4)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203376

RESUMO

BACKGROUND: Common demographic risk factors are identified in colorectal cancer (CRC) and type 2 diabetes mellitus (DM), nevertheless, the molecular link and mechanism for CRC-DM comorbidity remain elusive. Dysregulated glycogen synthase kinase-3 beta under metabolic imbalance is suggested to accelerate CRC pathogenesis/progression via regulating collpasin response mediator protein-2 (CRMP2). Accordingly, roles of CRMP2 in CRC and CRC-DM patients were investigated for elucidating the molecular convergence of CRC and DM. METHODS: CRMP2 profile in tumor tissues from CRC and CRC-DM patients was investigated to explore the link between CRC and DM etiology. Meanwhile, molecular mechanism of glucose to regulate CRMP2 profile and CRC characteristics was examined in vitro and in vivo. RESULTS: CRMP2 was significantly lower in tumor lesions and associated with advanced tumor stage in CRC-DM patients. Physiological hyperglycemia suppressed CRMP2 expression/activity and augmented malignant characteristics of CRC cells. Hyperglycemia promotes actin de-polymerization, cytoskeleton flexibility and cell proliferation/metastasis by downregulating CRMP2 profile and thus contributes to CRC disease progression. CONCLUSIONS: This study uncovers molecular evidence to substantiate and elucidate the link between CRC and T2DM, as well as characterizing the roles of CRMP2 in CRC-DM. Accordingly, altered metabolic adaptations are promising targets for anti-diabetic and cancer strategies.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Hiperglicemia , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas do Tecido Nervoso , Neoplasias Colorretais/complicações , Comorbidade , Diabetes Mellitus Tipo 2/complicações , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Fosforilação
15.
Nanoscale Horiz ; 6(9): 729-743, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323910

RESUMO

Head and neck cancer (HNC) has a high incidence and a poor prognosis. Epirubicin, a topoisomerase inhibitor, is a potential anthracycline chemotherapeutic for HNC treatment. HuR (ELAVL1), an RNA-binding protein, plays a critical role in promoting tumor survival, invasion, and resistance. HuR knockout via CRISPR/Cas9 (HuR CRISPR) is a possible strategy for the simultaneous modulation of the various pathways of tumor progression. Multifunctional nanoparticles modified with pH-sensitive epidermal growth factor receptor (EGFR)-targeting and nucleus-directed peptides were designed for the efficient delivery of HuR CRISPR and epirubicin to human tongue squamous carcinoma SAS cells and SAS tumor-bearing mice. The pH-sensitive nanoparticles responded to the acidic pH value as a switch to expose the targeting peptides. The cellular uptake and transfection efficiency of these nanoparticles in SAS cells increased via EGFR targeting, ligand-mediated endocytosis, and endosomal escape. These nanoparticles showed low cytotoxicity towards normal oral keratinocyte NOK cells. CRISPR/Cas9 was transported into the nucleus via the nuclear directing peptide and successfully knocked out HuR to suppress proliferation, metastasis, and resistance in SAS cells. The multiple inhibition of EGFR/ß-catenin/epithelial-mesenchymal transition pathways was mediated through modulating the EGFR/PI3K/mTOR/AKT axis. The co-treatment of epirubicin and HuR CRISPR in SAS cells further facilitated apoptosis/necroptosis/autophagy and caused cancer cell death. In combination with HuR CRISPR nanoparticles, the efficacy and safety of epirubicin nanoparticles against cancer in SAS tumor-bearing mice improved significantly. Collectively, these nanoparticles showed a tumor pH response, active EGFR targeting, and nuclear localization and thus offered a combinatorial spatiotemporal platform for chemotherapy and the CRISPR/Cas gene-editing system.


Assuntos
Nanopartículas , Neoplasias da Língua , Animais , Antraciclinas , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Camundongos , Microambiente Tumoral
16.
Sci Rep ; 11(1): 12497, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127699

RESUMO

Abnormal accumulation of acrolein, an α, ß unsaturated aldehyde has been reported as one pathological cause of the CNS neurodegenerative diseases. In the present study, the neuroprotective effect of selumetinib (a MEK-ERK inhibitor) on acrolein-induced neurotoxicity was investigated in vitro using primary cultured cortical neurons. Incubation of acrolein consistently increased phosphorylated ERK levels. Co-treatment of selumetinib blocked acrolein-induced ERK phosphorylation. Furthermore, selumetinib reduced acrolein-induced increases in heme oxygenase-1 (a redox-regulated chaperone protein) and its transcriptional factor, Nrf-2 as well as FDP-lysine (acrolein-lysine adducts) and α-synuclein aggregation (a pathological biomarker of neurodegeneration). Morphologically, selumetinib attenuated acrolein-induced damage in neurite outgrowth, including neuritic beading and neurite discontinuation. Moreover, selumetinib prevented acrolein-induced programmed cell death via decreasing active caspase 3 (a hallmark of apoptosis) as well as RIP (receptor-interacting protein) 1 and RIP3 (biomarkers for necroptosis). In conclusion, our study showed that selumetinib inhibited acrolein-activated Nrf-2-HO-1 pathway, acrolein-induced protein conjugation and aggregation as well as damage in neurite outgrowth and cell death, suggesting that selumetinib, a MEK-ERK inhibitor, may be a potential neuroprotective agent against acrolein-induced neurotoxicity in the CNS neurodegenerative diseases.


Assuntos
Acroleína/toxicidade , Benzimidazóis/administração & dosagem , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Necroptose/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/patologia , Cultura Primária de Células , Agregados Proteicos/efeitos dos fármacos , Ratos , Testes de Toxicidade Aguda , alfa-Sinucleína/metabolismo
17.
Pharmaceutics ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796618

RESUMO

Mitochondrial dysfunction may cause cancer and metabolic syndrome. Ellagic acid (abbreviated as E), a phytochemical, possesses anticancer activity. MicroRNA 125 (miR-125) may regulate metabolism. However, E has low aqueous solubility, and miR-125 is unstable in a biological fluid. Hence, this study aimed to develop nanoparticle formulations for the co-treatment of miR-125 and E. These nanoparticles were modified with one mitochondrion-directed peptide and a tumor-targeted ligand, and their modulating effects on mitochondrial dysfunction, antitumor efficacy, and safety in head and neck cancer (HNC) were evaluated. Results revealed that miR-125- and E-loaded nanoparticles effectively targeted cancer cells and intracellular mitochondria. The co-treatment significantly altered cellular bioenergetics, lipid, and glucose metabolism in human tongue squamous carcinoma SAS cells. This combination therapy also regulated protein expression associated with bioenergenesis and mitochondrial dynamics. These formulations also modulated multiple pathways of tumor metabolism, apoptosis, resistance, and metastasis in SAS cells. In vivo mouse experiments showed that the combined treatment of miR-125 and E nanoparticles exhibited significant hypoglycemic and hypolipidemic effects. The combinatorial therapy of E and miR-125 nanoparticles effectively reduced SAS tumor growth. To our best knowledge, this prospective study provided a basis for combining miRNA with a natural compound in nanoformulations to regulate mitochondrial dysfunction and energy metabolism associated with cancer.

18.
Theranostics ; 10(15): 6695-6714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550898

RESUMO

Background: Head and neck cancer (HNC) is a major cause of morbidity and mortality and has a poor treatment outcome. Irinotecan, a topoisomerase-I inhibitor, induces cell death by decreasing the religation of double-strand DNA. However, epithelial-mesenchymal transition (EMT), therapy resistance, and systemic toxicity caused by available antineoplastic agents hinder the efficacy and safety of HNC treatment. Chemotherapy combined with gene therapy shows potential application in circumventing therapy resistance and EMT. miR-200 exerts a remarkable suppressing effect on EMT-associated genes. Herein, liposomes and solid lipid nanoparticles (SLNs) modified with a pH-sensitive, self-destructive polyethylene glycol (PEG) shell and different peptides were designed as irinotecan and miR-200 nanovectors to enhance tumor-specific accumulation. These peptides included one ligand targeting the angiogenic tumor neovasculature, one mitochondrion-directed apoptosis-inducing peptide, and one cell-penetrating peptide (CPP) with high potency and selectivity toward cancer cells. Methods: Physicochemical characterization, cytotoxicity analysis, cellular uptake, regulation mechanisms, and in vivo studies on miR-200- and irinotecan-incorporated nanoparticles were performed to identify the potential antitumor efficacy and biosafety issues involved in HNC treatment and to elucidate the underlying signaling pathways. Results: We found that the cleavable PEG layer responded to low extracellular pH, and that the CPP and targeting peptides were exposed to improve the uptake and release of miR-200 and irinotecan into HNC human tongue squamous carcinoma (SAS) cells. The apoptosis of SAS cells treated with the combinatorial therapy was significantly induced by regulating various pathways, such as the Wnt/ß-catenin, MDR, and EMT pathways. The therapeutic efficacy and safety of the proposed co-treatment outperformed the commercially available Onivyde and other formulations used in a SAS tumor-bearing mouse model in this study. Conclusion: Chemotherapy and gene therapy co-treatment involving pH-sensitive and targeting peptide-modified nanoparticles may be an innovative strategy for HNC treatment.


Assuntos
Ácidos/química , Peptídeos Penetradores de Células/farmacologia , Irinotecano/farmacologia , MicroRNAs/administração & dosagem , Nanopartículas/administração & dosagem , Polietilenoglicóis/química , Neoplasias da Língua/terapia , Animais , Apoptose , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Mitocôndrias/metabolismo , Nanopartículas/química , Neovascularização Patológica/metabolismo , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Inibidores da Topoisomerase I/farmacologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Chin Med Assoc ; 83(11): 1029-1033, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32898088

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is one of the leading causes of vision loss. Once the retinal pigment epithelium (RPE) layers are destroyed, the poor visual acuity and recognition are generally irreversible. Cell therapy that possesses enormous potential in regenerative medicine may provide an alternative treatment for several incurable diseases such as AMD. In this study, we developed an innovative polydimethylsiloxane (PDMS)-based biomimetic scaffolds with cylinder micropillars for the cultivation of induced pluripotent stem cell-derived RPEs (iPSC-RPEs). RPEs were cultured on the PDMS-based biomimetic scaffolds and validated the cells gene expression. METHODS: The biomimetic PDMS scaffold was fabricated through spin coating and lithography method. It was further modified on surface with biomolecules to improve cell affinity and stability. The iPSC-RPEs were seeded on the scaffold and analyzed with characteristic gene expression. RESULTS: PDMS biomimetic scaffold was analyzed with Fourier transform infrared spectroscopy and proved its chemical composition. iPSC-RPEs demonstrated confluent cell monolayer on the scaffold and maintained RPE-specific gene expression, which proved the PDMS-based biomimetic scaffold to be supportive for iPSC-RPEs growth. CONCLUSION: The PDMS interface allowed regular growth of iPSC-RPEs and the design of cylinder micropillars further provided the bioscaffold high motion resistance may improve the engraftment stability of iPSC-RPEs after transplantation. Taken together, this innovative PDMS-based biomimetic scaffold may serve as an ideal interface for in vitro iPSC-RPE cultivation and subsequent transplantation in vivo. This novel device exhibits better bioavailability than conventional injection of donor cells and may be an alternative option for the treatment of AMD.


Assuntos
Biomimética , Epitélio Pigmentado da Retina/citologia , Alicerces Teciduais , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Degeneração Macular/terapia
20.
Sci Rep ; 9(1): 2516, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792526

RESUMO

Activated epidermal growth factor receptor (EGFR) has been proposed in the pathophysiology of neurodegenerative diseases. In the present study, the anti-inflammatory effect of afatinib, an EGFR-tyrosine kinase inhibitor (EGFR-TKIs) was investigated using CTX-TNA2 cells and primary cultured astrocytes subjected to oxygen/glucose deprivation (OGD). We found that OGD induced EGFR phosphorylation and activated subsequent signaling pathways, including phosphorylation of AKT and extracellular signal-regulated kinases (ERK). Afatinib blocked OGD-induced phosphorylation of EGFR, AKT and ERK. At the same time, afatinib attenuated OGD-induced elevations in glial fibrillary acidic protein (a biomarker of activated astrocytes) and proliferating cell nuclear antigen expression (a cell proliferating biomarker) as well as hypoxia-induced migratory ability. Furthermore, afatinib decreased OGD-induced increases in cyclooxygenase-II and inducible nitric oxide synthase expression of the treated astrocytes as well as NO content in the culture medium. Moreover, afatinib attenuated OGD-induced caspase 1 activation (a biomarker of inflammasome activation) and interleukin-1ß levels (a pro-inflammatory cytokine). Collectively, afatinib could block OGD-induced EGFR activation and its downstream signaling pathways in astrocytes. Moreover, afatinib attenuated OGD-induced astrocyte activation, proliferation and inflammasome activation. These data support the involvement of EGFR activation in neuroinflammation. Furthermore, EGFR-TKIs may be promising in inhibiting neuroinflammation in the CNS neurodegenerative diseases.


Assuntos
Afatinib/farmacologia , Genes erbB-1/genética , Inflamação/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carência Cultural , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neuroglia/efeitos dos fármacos , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/genética , Oxigênio/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA