Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200674

RESUMO

Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Peixes/metabolismo , Neuropeptídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Aquicultura , Proteínas de Peixes/imunologia , Peixes , Brânquias/metabolismo , Humanos , Imunidade Inata/imunologia , Neuropeptídeos/imunologia , Pele/metabolismo
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430187

RESUMO

The amphibious teleost Giant mudskipper (Periophthalmodon schlosseri, Pallas 1770) inhabit muddy plains and Asian mangrove forests. It spends more than 90% of its life outside of the water, using its skin, gills, and buccal-pharyngeal cavity mucosa to breathe in oxygen from the surrounding air. All vertebrates have been found to have mast cells (MCs), which are part of the innate immune system. These cells are mostly found in the mucous membranes of the organs that come in contact with the outside environment. According to their morphology, MCs have distinctive cytoplasmic granules that are released during the degranulation process. Additionally, these cells have antimicrobial peptides (AMPs) that fight a variety of infections. Piscidins, hepcidins, defensins, cathelicidins, and histonic peptides are examples of fish AMPs. Confocal microscopy was used in this study to assess Piscidin1 expression in Giant Mudskipper branchial MCs. Our results demonstrated the presence of MCs in the gills is highly positive for Piscidin1. Additionally, colocalized MCs labeled with TLR2/5-HT and Piscidin1/5-HT supported our data. The expression of Piscidin1 in giant mudskipper MCs highlights the involvement of this peptide in the orchestration of teleost immunity, advancing the knowledge of the defense system of this fish.


Assuntos
Brânquias , Perciformes , Animais , Brânquias/metabolismo , Mastócitos , Serotonina/metabolismo , Perciformes/metabolismo , Peixes/metabolismo , Peptídeos/metabolismo
3.
Clin Sci (Lond) ; 125(12): 575-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23742173

RESUMO

Diabetic mice are characterized by a disrupted expression pattern of VEGF (vascular endothelial growth factor), and impaired vasculogenesis during healing. Experimental evidence suggests that RLX (relaxin) can improve several parameters associated with wound healing. Therefore we investigated the effects of porcine-derived RLX in diabetes-related wound-healing defects in genetically diabetic mice. An incisional wound model was produced on the back of female diabetic C57BL/KsJ-m+/+Lept(db) (db+/db+) mice and their normal littermates (db(+/+)m). Animals were treated daily with porcine RLX (25 µg/mouse per day, subcutaneously) or its vehicle. Mice were killed on 3, 6 and 12 days after skin injury for measurements of VEGF mRNA and protein synthesis, SDF-1α (stromal cell-derived factor-1α) mRNA and eNOS (endothelial NO synthase) expression. Furthermore, we evaluated wound-breaking strength, histological changes, angiogenesis and vasculogenesis at day 12. Diabetic animals showed a reduced expression of VEGF, eNOS and SDF-1α compared with non-diabetic animals. At day 6, RLX administration resulted in an increase in VEGF mRNA expression and protein wound content, in eNOS expression and in SDF-1α mRNA. Furthermore, the histological evaluation indicated that RLX improved the impaired wound healing, enhanced the staining of MMP-11 (matrix metalloproteinase-11) and increased wound-breaking strength at day 12 in diabetic mice. Immunohistochemistry showed that RLX in diabetic animals augmented new vessel formation by stimulating both angiogenesis and vasculogenesis. RLX significantly reduced the time to complete skin normalization and this effect was abrogated by a concomitant treatment with antibodies against VEGF and CXCR4 (CXC chemokine receptor 4), the SDF-1α receptor. These data strongly suggest that RLX may have a potential application in diabetes-related wound disorders.


Assuntos
Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/genética , Relaxina/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Glicemia/metabolismo , Caderinas/metabolismo , Quimiocina CXCL12/metabolismo , Feminino , Metaloproteinase 11 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Óxido Nítrico/metabolismo , Relaxina/farmacologia , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Nat Prod Res ; 37(5): 743-749, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35707902

RESUMO

The immune system of teleosts offers many ideas to deepen the immune mechanisms and cells in general. The use of zebrafish as an experimental model is increased in recent years, thanks to its genetic and anatomical characteristics. It is known that several natural compounds exert an action on the immune system, boosting it. Spirulina, a non-toxic blue-green alga, has been declared a superfood for its peculiar biological activities. In this study, we test the immunostimulant effect of spirulina on zebrafish liver macrophages by immunohistochemical analysis using optical and confocal microscopy. Our results have shown an increase in the number of macrophages after feeding with spirulina, furthermore, this natural 'superfood' can induce macrophages aggregation. These data not only provide information on the possible effect of this alga as a complementary feed on the immune cells of teleost, but also improve the knowledge of the immune mechanisms of vertebrates.


Assuntos
Spirulina , Peixe-Zebra , Animais , Spirulina/química , Fígado , Macrófagos
5.
Acta Histochem ; 125(3): 152031, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37075648

RESUMO

The integument acts as a barrier to protect the body from harmful pathogenic infectious agents, parasites, UV rays, trauma, and germs. The integument of invertebrates and vertebrates are structurally different: while invertebrates usually have a simple monolayer epidermis frequently covered by mucus, cuticles, or mineralized structures, vertebrates possess a multilayered epidermis with several specialized cells. This study aims to describe by morphological, histological, and immunohistochemical analyses, the morpho-structural adaptations throughout evolution of the integument of gastropod Aplysia depilans (Gmelin, 1791), ascidian Styela plicata (Lesuer, 1823), myxine hagfish Eptatretus cirrhatus (Forster, 1801) and teleost Heteropneustes fossilis (Bloch, 1794) for the first time, with special reference to sensory epidermal cells. Different types of cells could be identified that varied according to the species; including mucous cells, serous glandular cells, clavate cells, club cells, thread cells, and support cells. In all integuments of the specimens analyzed, sensory solitary cells were identified in the epidermis, immunoreactive to serotonin and calbindin. Our study provided an essential comparison of integuments, adding new information about sensory epidermal cells phylogenetic conservation and on the structural changes that invertebrates and vertebrates have undergone during evolution.


Assuntos
Organismos Aquáticos , Pele , Animais , Filogenia , Epiderme , Vertebrados
6.
Biochim Biophys Acta ; 1812(7): 752-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21447385

RESUMO

Hyaluronic acid (HA), an essential component of the extracellular matrix, is an efficient space filler that maintains hydration, serves as a substrate for assembly of proteoglycans and is involved in wound healing. Although numerous pieces of evidence demonstrate beneficial effects in promoting wound healing in diabetes, a systemic approach has never been tested. We used an incisional wound healing model in genetically diabetic mice to test the effects of systemic injection of HA. Diabetic (n=56) and normoglycemic (n=56) mice were subjected to incision and randomized (8 groups of 7 animals each) to receive HA at different doses, 7.5, 15 and 30mg/kg/i.p., or vehicle (0.9% NaCl solution) for 12days. At the end of the experiment animals were sacrificed and skin wounds were excised for histological, biochemical and molecular analysis. Histology revealed that the most effective dose to improve wound repair and angiogenesis in diabetic mice was 30mg/kg. Furthermore HA injection (30mg/kg) improved the altered healing pattern in diabetic animals, increased skin remodeling proteins TGF-ß and transglutaminase-II and restored the altered expression of cyclin B1/Cdc2 complex. Evaluation of skin from diabetic animals injected with HA revealed also an increase in HA content, suggesting that systemic injection may be able to restore the reduced intracellular HA pool of diabetic mice. Finally HA markedly improved skin mechanical properties. These promising results, if confirmed in a clinical setting, may improve the care and management of diabetic patients.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Ácido Hialurônico/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Western Blotting , Feminino , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular
7.
J Am Nutr Assoc ; 41(8): 840-854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34550044

RESUMO

In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Adjuvantes Imunológicos/farmacologia , Controle de Doenças Transmissíveis , Antidepressivos/farmacologia
8.
Microsc Res Tech ; 85(7): 2651-2658, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35394101

RESUMO

The endostyle is the first component of the ascidian digestive tract, it is shaped like a through and is located in the pharynx's ventral wall. This organ is divided longitudinally into nine zones that are parallel to each other. Each zone's cells are physically and functionally distinct. Support elements are found in zones 1, 3, and 5, while mucoproteins secreting elements related to the filtering function are found in zones 2, 4, and 6. Zones 7, 8, and 9, which are located in the lateral dorsal section of the endostyle, include cells with high iodine and peroxidase concentrations. Immunohistochemical technique using the following antibodies, Toll-like receptor 2 (TLR-2) and vasoactive intestinal peptide (VIP), and lectin histochemistry (WGA-wheat-germagglutinin), were used in this investigation to define immune cells in the endostyle of Styela plicata (Lesueur, 1823). Our results demonstrate the presence of immune cells in the endostyle of S. plicata, highlighting that innate immune mechanisms are highly conserved in the phylogeny of the chordates. RESEARCH HIGHLIGHTS: Immune cells positive to TLR-2 and VIP in the endostyle of Styela plicata. Expression of WGA in several zones of endostyle. Use of comparative biology to improve the knowledge about immunology in ascidians.


Assuntos
Urocordados , Animais , Filogenia , Receptor 2 Toll-Like , Urocordados/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
9.
Acta Histochem ; 124(3): 151876, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35303512

RESUMO

Rodlet cells (RCs) have always been an enigma for scientists. RCs have been given a variety of activities over the years, including ion transport, osmoregulation, and sensory function. These cells, presumably as members of the granulocyte line, are present only in teleosts and play a role in the innate immune response. RCs are migratory cells found in a variety of organs, including skin, vascular, digestive, uropoietic, reproductive, and respiratory systems, and present distinct physical properties that make them easily recognizable in tissues and organs. The development of RCs can be divided into four stages: granular, transitional, mature, and ruptured, having different morphological characteristics. Our study aims to characterize the different stages of these cells by histomorphological and histochemical techniques. Furthermore, we characterized these cells at all stages with peroxidase and fluorescence immunohistochemical techniques using different antibodies: S100, tubulin, α-SMA, piscidin, and for the first time TLR-2. From our results, the immunoreactivity of these cells to the antibodies performed may confirm that RCs play a role in fish defense mechanisms, helping to expand the state of the art on immunology and immune cells of teleosts.


Assuntos
Carpa Dourada , Rim , Animais , Anticorpos , Imunidade Inata , Microscopia Confocal
10.
Hum Immunol ; 83(11): 755-767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35963787

RESUMO

In December 2019, a new single-stranded RNA coronavirus, SARS-CoV-2, appeared in China and quickly spread around the world leading to a pandemic. Infection with SARS-CoV-2 generates symptoms ranging from asymptomatic to severe, occasionally requiring hospitalization in intensive care units, and, in more severe cases, leading to death. Scientists and researchers around the world have made a real race against time to develop various vaccines to slow down and stop the spread of the virus. In addition to conventional viral vector vaccines, new generation mRNA vaccines, BNT152b2 (Comirnaty) and mRNA-1273 (Spikevax), have been developed respectively by Pfizer/BioNTech and Moderna. These vaccines act on immune cells to induce an immune response with the production of specific antibodies against Spike protein of SARS-CoV-2, and to stimulate the differentiation of T and B memory cells. The objective of this review is to provide a detailed picture of the validity of these new vaccines and the safety of vaccination. Not only was the immunogenic effect of mRNA vaccines evaluated, but also the psychosocial impact they had on the population. The data collected show that this type of vaccine can also be an excellent candidate for future treatment and eradication of possible new pathologies with viral and non-viral etiology.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Vacinação , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação/psicologia
11.
Biology (Basel) ; 11(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-36101424

RESUMO

Dendritic cells (DCs) are antigen-presenting cells (APCs) that regulate the beginning of adaptive immune responses. The mechanisms of tolerance to antigens moving through the digestive tract are known to be regulated by intestinal DCs. Agnatha and Gnathostoma are descendants of a common ancestor. The Ostracoderms gave rise to Cyclostomes, whereas the Placoderms gave rise to Chondrichthyes. Sarcopterygii and Actinopterygii are two evolutionary lines of bony fishes. Brachiopterygii and Neopterygii descend from the Actinopterygii. From Neopterygii, Holostei and Teleostei evolved. Using immunohistochemistry with TLR-2, Langerin/CD207, and MHC II, this study aimed to characterize intestinal DCs, from myxines to teleosts. The findings reveal that DCs are positive for the antibodies tested, highlighting the presence of DCs and DC-like cells phylogenetically from myxines, for the first time, to teleosts. These findings may aid in improving the level of knowledge about the immune system's evolution and these sentinel cells, which are crucial to the body's defense.

12.
Toxics ; 10(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622632

RESUMO

Industrialization has resulted in a massive increase in garbage output, which is frequently discharged or stored in waterways like rivers and seas. Due to their toxicity, durability, bioaccumulation, and biomagnification, heavy metals (such as mercury, cadmium, and lead) have been identified as strong biological poisons. Their presence in the aquatic environment has the potential to affect water quality parameters and aquatic life in general. Teleosts' histopathology provides a sensitive indicator of pollutant-induced stress, because their organs have a central role in the transformation of different active chemical compounds in the aquatic environment. In particular, the gills, kidneys, and liver are placed at the center of toxicological studies. The purpose of this study is to examine the morphological changes caused by heavy metals in the kidney and gills of Boops boops, with a focus on melanomacrophages centers (MMCs) and rodlet cells (RCs) as environmental biomarkers, using histological and histochemical stainings (hematoxylin/eosin, Van Gieson trichrome, Periodic Acid Schiff reaction, and Alcian Blue/PAS 2.5), and immunoperoxidase methods. Our findings show an increase of MMCs and RCs linked to higher exposure to heavy metals, confirming the role of these aggregates and cells as reliable biomarkers of potential aquatic environmental changes reflected in fish fauna. The cytological study of RCs and MMCs could be important in gaining a better understanding of the complicated immune systems of teleosts.

13.
Biology (Basel) ; 11(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36138844

RESUMO

The fish intestine operates as a complicated interface between the organism and the environment, providing biological and mechanical protections as a result of a viscous layer of mucus released by goblet cells, which serves as a barrier against bacteria, viruses, and other pathogens, and contributes to the functions of the immune system. Therefore, goblet cells have a role in preserving the health of the body by secreting mucus and acting as sentinels. The ancient jawless fish broadgilled hagfish (Eptatretus cirrhatus, Forster, 1801) has a very basic digestive system because it lacks a stomach. By examining the presence, localization, and co-localization of 5-HT, TLR2, iNOS, and Piscidin1, this study intends to provide insight into the potential immune system contributions arranged by the gut goblet cells of broadgilled hagfish. Our results characterize intestinal goblet cells of broadgilled hagfish, for the first time, with the former antibodies, suggesting the hypothesis of conservation of the roles played by these cells also in primitive vertebrates. Moreover, this study deepens the knowledge about the still little-known immune system of hagfish.

14.
Biology (Basel) ; 11(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421366

RESUMO

The immune system of a fish has cellular and molecular defense mechanisms that are substantially retained throughout the evolution of vertebrates. The innate immune system provides biological processes, such as phagocytosis and mechanical barriers, to implement an efficient defensive response after exposure to chemical or biological contaminants, pollutants, and contact with parasites, germs, and pathogens. Club cells (CCs) are widespread in the skin of Ostariophysi. After a predator attack or exposure to toxins and parasites, these cells can produce alarming substances. Given their effectiveness against viruses, parasites, and common skin lesions, recent studies have suggested that CCs are a component of the immune system. This study aims to immunohistochemically characterize the CCs for the first time in the skin of zebrafish, using mitogen-activated protein kinase (MAPK) p38, Toll-like receptor (TLR)2, Piscidin1, and inducible nitric oxide synthase (iNOS) peptides involved in the function of all types of vertebrate immune cells. According to our analysis, the intermediate layer of the epidermis exhibited rounded, oval, and elongated CCs, with central acidophilic cytoplasm and a spherical basophilic nucleus, that are positive to the antibodies tested. Our results may confirm that CCs could be involved in the immune function, increasing our knowledge of the immune system of teleosts.

15.
Tissue Cell ; 71: 101584, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224967

RESUMO

The tunicate, Styela plicata (Lesueur, 1823) present an open circulator system with a tubular heart and blood flowing in lacunae among organs, bathing the tissues directly. Blood vascular lacunae are present in the tunica that is situated outside the epidermis and present a fibrous structure. The cells of the tunic are in straight contact with the blood vessels or are highly mobile. Ascidians are considered model organisms in comparative immunology of the chordate, and hold an important phylogenetic position as sister group of vertebrates. In recent years, numerous studies have reported the presence of Toll-like receptors (TLRs) in the genome of non-mammalian organisms including invertebrates. Two TLRs, designated Ci-TLR1 and Ci-TLR2 were expressed in the stomach, intestine and in numerous hemocytes of Ciona intestinalis, demonstrating that these key transmembrane proteins are evolutionarily conserved in ascidians. In this study for the first time, hemocytes aggregates were identified by confocal immunofluorescence techniques, using TLR2 antibody in the tunica of Styela plicata; furthermore, α-Smooth Muscle Actin (α-SMA) expression has been shown in the cells lining the vessels of the tunic. Our results support the view that the TLR-mediated innate immune functions are conserved in ascidian tissues.


Assuntos
Actinas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Receptor 2 Toll-Like/imunologia , Urocordados/imunologia , Actinas/genética , Animais , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptor 2 Toll-Like/genética , Urocordados/genética
16.
Nat Prod Res ; 35(22): 4454-4459, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32067491

RESUMO

Morphological analysis and immunohistochemical determination of vitellogenin (Vtg) were carried out in zebrafish ovaries (Danio rerio). The goal was to determine the nutraceutical effect of Spirulina feed on ovarian maturation stages of adult zebrafish. After 30 d, in the stages of advanced maturation a prevalence of oocytes was found in the experimental group. Immunohistochemical investigations revealed a significant increase in Vtg, precursor of vitelline (Vn) in egg yolk, whose expression increased in the liver in relation to the stages of maturation. In the zebrafish liver, the expression of Vtg was extremely low before vitellogenesis, and then increased and it was maintained at a high level until the final stage of ovarian maturation. The results showed that food additives such as Spirulina can improve fertility in laboratory farmed fish. The data obtained from this study may be a contribution to wider research aimed at improving reproduction in all vertebrates, including humans.


Assuntos
Spirulina , Vitelogeninas , Animais , Dieta , Feminino , Oogênese , Peixe-Zebra
17.
Clin Sci (Lond) ; 114(12): 707-18, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18078386

RESUMO

Ang-1 (angiopoietin-1) improves the ineffective angiogenesis and impaired wound healing in diabetes; however, the mechanism underlying this positive effect is still far from being completely understood. In the present study, we investigated whether rAAV (recombinant adeno-associated virus)-Ang-1 gene transfer could improve wound repair in genetically diabetic mice (db+/db+) and the mechanism(s) by which it causes new vessel formation. An incisional skin-wound model in diabetic and normoglycaemic mice was used. After the incision, animals received rAAV-LacZ or rAAV-Ang-1 in the wound edge. After 7 and 14 days, wounds were used to (i) confirm Ang-1 gene transfer, (ii) assess histologically the healing process, (iii) evaluate wound-breaking strength, and (iv) study new vessel formation by PECAM-1 (platelet/endothelial cell adhesion molecule-1) immunostaining. Finally, we investigated VEGF (vascular endothelial growth factor) mRNA and protein levels, eNOS (endothelial NO synthase) expression and VEGFR-1 and VEGFR-2 (VEGF receptor-1 and -2 respectively) immunostaining. The efficiency of Ang-1 gene transfer was confirmed by increased mRNA and protein expression of the protein. rAAV-Ang-1 significantly improved the healing process, stimulating re-epithelization and collagen maturation, increasing breaking strength and significantly augmenting the number of new vessels, as indicated by PECAM-1 immunostaining. However, Ang-1 gene transfer did not modify the decrease in VEGF mRNA and protein expression in diabetic mice; in contrast, Ang-1 increased eNOS expression and augmented nitrate wound content and VEGFR-2 immunostaining and protein expression. Ang-1 gene transfer did not change vascular permeability. Similar results were obtained in normoglycaemic animals. In conclusion, our results provide strong evidence that Ang-1 gene transfer improves the delayed wound repair in diabetes by inducing angiogenesis in a VEGF-independent manner.


Assuntos
Angiopoietina-1/genética , Diabetes Mellitus Experimental/fisiopatologia , Terapia Genética/métodos , Pele/lesões , Cicatrização/genética , Angiopoietina-1/fisiologia , Animais , Permeabilidade Capilar , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Feminino , Técnicas de Transferência de Genes , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III , Pele/irrigação sanguínea , Pele/metabolismo , Pele/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Wound Repair Regen ; 16(2): 208-17, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18318806

RESUMO

Healing of diabetic wounds still remains a critical medical problem. Polydeoxyribonucleotide (PDRN), a compound having a mixture of deoxyribonucleotide polymers, stimulates the A2 purinergic receptor with no toxic or adverse effect. We studied the effects of PDRN in diabetes-related healing defect using an incisional skin-wound model produced on the back of female diabetic mice (db+/db+) and their normal littermates (db+/+m). Animals were treated daily for 12 days with PDRN (8 mg/kg/ip) or its vehicle (100 muL 0.9%NaCl). Mice were killed 3, 6, and 12 days after skin injury to measure vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, to assay angiogenesis and tissue remodeling through histological evaluation, and to study CD31, Angiopoietin-1 and Transglutaminase-II. Furthermore, we measured wound breaking strength at day 12. PDRN injection in diabetic mice resulted in an increased VEGF message (vehicle=1.0+/-0.2 n-fold vs. beta-actin; PDRN=1.5+/-0.09 n-fold vs. beta-actin) and protein wound content on day 6 (vehicle=0.3+/-0.07 pg/wound; PDRN=0.9+/-0.1 pg/wound). PDRN injection improved the impaired wound healing and increased the wound-breaking strength in diabetic mice. PDRN also caused a marked increase in CD31 immunostaining and induced Transglutaminase-II and Angiopoietin-1 expression. Furthermore, the concomitant administration of 3,7-dimethyl-1-propargilxanthine, a selective adenosine A2A receptor antagonist, abolished PDRN positive effects on healing. However, 3,7-dimethyl-1-propargilxanthine alone did not affect wound healing in both diabetic mice and normal littermates. These results suggest that PDRN might be useful in wound disorders associated with diabetes.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Polidesoxirribonucleotídeos/farmacologia , Cicatrização/efeitos dos fármacos , Angiopoietina-1/metabolismo , Animais , Antígenos CD34/metabolismo , Diabetes Mellitus Experimental/genética , Feminino , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Camundongos Endogâmicos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/fisiologia
19.
Nat Prod Res ; 32(10): 1136-1144, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28434239

RESUMO

The aim of the present study is to determine if Ahr ligands as PCB-126, a dioxin-like, might contribute to inhibition of the tumour suppressor p53 by promoting its degradation through proteasome-ubiquitin system (UPS). The findings show, in the presence of PCB-126, a significant increase in p53 immunoreactivity in fish compared to the control. Subsequently, there is a decrease in p53 immunoreactivity at 24 h which is maintained even at 72 h. There is also a slight decrease in ubiquitin immunoreactivity to 12 h compared to the control and a marked decrease to 24 and 72 h. It's very important to underline as in this study we demonstrate a marked decrease in ubiquitin and p53 immunoreactivity at 24 and 72 h. Our result emphasise the need to deeply the role of this receptor in UPS regulation as potential therapeutic target for cancer treatment.


Assuntos
Proteínas de Peixes/metabolismo , Bifenilos Policlorados/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Dourada/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Produtos Pesqueiros , Fígado/efeitos dos fármacos , Fígado/patologia , Ubiquitina/metabolismo , Ubiquitinação
20.
Front Physiol ; 9: 614, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881359

RESUMO

Gastrointestinal function in vertebrates is influenced by stressors, such as fasting and refeeding, different types of diet and hormonal factors. The aim of this paper was to analyze the effect of a Spirulina (Arthrospira platensis) diet, a microalga known for its nutraceutical properties, on the gastrointestinal tract of zebrafish (Danio rerio) regarding expression of oligopeptide transporter 1 (PepT1) and ghrelin (GHR). Food deprivation and refeeding was investigated to elucidate expression of PepT1 and GHR at a gastrointestinal level and the zebrafish compensatory mechanism. PepT1 is responsible for absorbing di- and tripeptides through a brush border membrane of intestinal mucosa. GHR is a brain-gut peptide in fish and mammals, stimulating growth hormone secretion and regulating appetite. Samples were taken after 2 and 5 days of specimen fasting, and 2 and 5 days of refeeding with Sera Spirulina tabs, in which the major constituent is Spirulina sp. (50.2% protein). Morphological and immunohistochemical analysis of PepT1 and GHR were carried out. Control specimen intestinal tract showed normal morphology of the digestive tract. Fasting caused fold structural changes and intestinal lumen constriction. Immunohistochemical analysis showed a PepT1 level reduction after fasting and an increase after refeeding, reaching very high levels after 5 days, compared to controls. GHR levels increased after food deprivation and gradually decreased after refeeding. Increased expression of PepT1 in refeeding fish suggests a compensatory physiological mechanism, as does the increase in GHR levels in fasting fish followed by a reduction after refeeding. A compensatory mechanism may be induced by fasting and refeeding and by a higher protein Spirulina diet. The microalga, for its nutraceutical properties, is an excellent candidate for animal breeding and human diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA