Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39275726

RESUMO

This study focuses on the integration and validation of a filtering face piece 3 (FFP3) facemask module for monitoring breathing activity in industrial environments. The key objective is to ensure accurate, real-time respiratory rate (RR) monitoring while maintaining workers' comfort. RR monitoring is conducted through temperature variations detected using temperature sensors tested in two configurations: sensor t1, integrated inside the exhalation valve and necessitating structural mask modifications, and sensor t2, mounted externally in a 3D-printed structure, thus preserving its certification as a piece of personal protective equipment (PPE). Ten healthy volunteers participated in static and dynamic tests, simulating typical daily life and industrial occupational activities while wearing the breathing activity monitoring module and a chest strap as a reference instrument. These tests were carried out in both indoor and outdoor settings. The results demonstrate comparable mean absolute error (MAE) for t1 and t2 in both indoor (i.e., 0.31 bpm and 0.34 bpm) and outdoor conditions (i.e., 0.43 bpm and 0.83 bpm). During simulated working activities, both sensors showed consistency with MAE values in static tests and were not influenced by motion artifacts, with more than 97% of RR estimated errors within ±2 bpm. These findings demonstrate the effectiveness of integrating a smart module into protective masks, enhancing occupational health monitoring by providing continuous and precise RR data without requiring additional wearable devices.


Assuntos
Máscaras , Equipamento de Proteção Individual , Taxa Respiratória , Humanos , Taxa Respiratória/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Adulto , Masculino , Feminino , Respiração
2.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544279

RESUMO

Respiratory rate (fR) monitoring through wearable devices is crucial in several scenarios, providing insights into well-being and sports performance while minimizing interference with daily activities. Strain sensors embedded into garments stand out but require thorough investigation for optimal deployment. Optimal sensor positioning is often overlooked, and when addressed, the quality of the respiratory signal is neglected. Additionally, sensor metrological characterization after sensor integration is often omitted. In this study, we present the design, development, and feasibility assessment of a smart t-shirt embedded with two flexible sensors for fR monitoring. Guided by a motion capture system, optimal sensor design and position on the chest wall were defined, considering both signal magnitude and quality. The sensors were developed, embedded into the wearable system, and metrologically characterized, demonstrating a remarkable response to both static (sensitivity 9.4 Ω⋅%-1 and 9.1 Ω⋅%-1 for sensor A and sensor B, respectively) and cyclic loads (min. hysteresis span 20.4% at 36 bpm obtained for sensor A). The feasibility of the wearable system was assessed on healthy volunteers both under static and dynamic conditions (such as running, walking, and climbing stairs). A mean absolute error of 0.32 bpm was obtained by averaging all subjects and tests using the combination of the two sensors. This value was lower than that obtained using both sensor A (0.53 bpm) and sensor B (0.78 bpm) individually. Our study highlights the importance of signal amplitude and quality in optimal sensor placement evaluation, as well as the characterization of the embedded sensors for metrological assessment.


Assuntos
Corrida , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , Taxa Respiratória , Têxteis
3.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257715

RESUMO

Accurately mapping the temperature during ablation is crucial for improving clinical outcomes. While various sensor configurations have been suggested in the literature, depending on the sensors' type, number, and size, a comprehensive understanding of optimizing these parameters for precise temperature reconstruction is still lacking. This study addresses this gap by introducing a tool based on a theoretical model to optimize the placement of fiber Bragg grating sensors (FBG) within the organ undergoing ablation. The theoretical model serves as a general framework, allowing for adaptation to various situations. In practical application, the model provides a foundational structure, with the flexibility to tailor specific optimal solutions by adjusting problem-specific data. We propose a nonlinear and nonconvex (and, thus, only solvable in an approximated manner) optimization formulation to determine the optimal distribution and three-dimensional placement of FBG arrays. The optimization aims to find a trade-off among two objectives: maximizing the variance of the expected temperatures measured by the sensors, which can be obtained from a predictive simulation that considers both the type of applicator used and the specific organ involved, and maximizing the squared sum of the distances between the sensor pairs. The proposed approach provides a trade-off between collecting diverse temperatures and not having all the sensors concentrated in a single area. We address the optimization problem through the utilization of approximation schemes in programming. We then substantiate the efficacy of this approach through simulations. This study tackles optimizing the FBGs' sensor placement for precise temperature monitoring during tumor ablation. Optimizing the FBG placement enhances temperature mapping, aiding in tumor cell eradication while minimizing damage to surrounding tissues.

4.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475147

RESUMO

The safeguarding of plant health is vital for optimizing crop growth practices, especially in the face of the biggest challenges of our generation, namely the environmental crisis and the dramatic changes in the climate. Among the many innovative tools developed to address these issues, wearable sensors have recently been proposed for monitoring plant growth and microclimates in a sustainable manner. These systems are composed of flexible matrices with embedded sensing elements, showing promise in revolutionizing plant monitoring without being intrusive. Despite their potential benefits, concerns arise regarding the effects of the long-term coexistence of these devices with the plant surface. Surprisingly, a systematic analysis of their influence on plant physiology is lacking. This study aims to investigate the effect of the color and geometric features of flexible matrices on two key plant physiological functions: photosynthesis and transpiration. Our findings indicate that the negative effects associated with colored substrates, as identified in recent research, can be minimized by holing the matrix surface with a percentage of voids of 15.7%. This approach mitigates interference with light absorption and reduces water loss to a negligible extent, making our work one of the first pioneering efforts in understanding the intricate relationship between plant wearables' features and plant health.


Assuntos
Transpiração Vegetal , Dispositivos Eletrônicos Vestíveis , Transpiração Vegetal/fisiologia , Fotossíntese/fisiologia , Fenômenos Fisiológicos Vegetais , Transporte Biológico , Água , Folhas de Planta/fisiologia
5.
BMC Musculoskelet Disord ; 24(1): 766, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770871

RESUMO

PURPOSE: Radiofrequency ablation is an increasingly used surgical option for ablation, resection and coagulation of soft tissues in joint arthroscopy. One of the major issues of thermal ablation is the temperature monitoring across the target areas, as cellular mortality is a direct consequence of thermal dosimetry. Temperatures from 45 °C to 50 °C are at risk of damage to chondrocytes. One of the most reliable tools for temperature monitoring is represented by fiber optic sensors, as they allow accurate and real-time temperature measurement via a minimally invasive approach. The aim of this study was to determine, by fiber Bragg grating sensors (FBGs), the safety of radiofrequency ablation in tissue heating applied to ex-vivo bovine hip joints. METHODS: Ex vivo bovine hips were subjected to radiofrequency ablation, specifically in the acetabular labrum, for a total of two experiments. The WEREWOLF System (Smith + Nephew, Watford, UK) was employed in high operating mode and in a controlled ablation way. One optical fiber embedding seven FBGs was used to record multipoint temperature variations. Each sensor was 1 mm in length with a distance from edge to edge with each other of 2 mm. RESULTS: The maximum variation was recorded in both the tests by the FBG1 (i.e., the closest one to the electrode tip) and was lower than to 2.8 °C. The other sensors (from FBG2 to FBG7) did not record a significant temperature change throughout the duration of the experiment (maximum up to 0.7 °C for FBG7). CONCLUSIONS: No significant increase in temperature was observed at any of the seven sites. The sensor nearest to the radiofrequency source exhibited the highest temperature rise, but the variation was only 3 °C. The minimal temperature increase registered at the measurement sites, according to existing literature, is not expected to be cytotoxic. FBGs demonstrate the potential to fulfil the strict requirements for temperature measurements during arthroscopic surgery.


Assuntos
Articulação do Quadril , Ablação por Radiofrequência , Humanos , Bovinos , Animais , Temperatura , Artroscopia , Condrócitos
6.
Sensors (Basel) ; 23(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139623

RESUMO

Nowadays, there is an ever-growing interest in assessing the collective intelligence (CI) of a team in a wide range of scenarios, thanks to its potential in enhancing teamwork and group performance. Recently, special attention has been devoted on the clinical setting, where breakdowns in teamwork, leadership, and communication can lead to adverse events, compromising patient safety. So far, researchers have mostly relied on surveys to study human behavior and group dynamics; however, this method is ineffective. In contrast, a promising solution to monitor behavioral and individual features that are reflective of CI is represented by wearable technologies. To date, the field of CI assessment still appears unstructured; therefore, the aim of this narrative review is to provide a detailed overview of the main group and individual parameters that can be monitored to evaluate CI in clinical settings, together with the wearables either already used to assess them or that have the potential to be applied in this scenario. The working principles, advantages, and disadvantages of each device are introduced in order to try to bring order in this field and provide a guide for future CI investigations in medical contexts.


Assuntos
Comunicação , Liderança , Humanos , Segurança do Paciente , Inteligência
7.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617147

RESUMO

Wearable devices are widely spreading in various scenarios for monitoring different parameters related to human and recently plant health. In the context of precision agriculture, wearables have proven to be a valuable alternative to traditional measurement methods for quantitatively monitoring plant development. This study proposed a multi-sensor wearable platform for monitoring the growth of plant organs (i.e., stem and fruit) and microclimate (i.e., environmental temperature-T and relative humidity-RH). The platform consists of a custom flexible strain sensor for monitoring growth when mounted on a plant and a commercial sensing unit for monitoring T and RH values of the plant surrounding. A different shape was conferred to the strain sensor according to the plant organs to be engineered. A dumbbell shape was chosen for the stem while a ring shape for the fruit. A metrological characterization was carried out to investigate the strain sensitivity of the proposed flexible sensors and then preliminary tests were performed in both indoor and outdoor scenarios to assess the platform performance. The promising results suggest that the proposed system can be considered one of the first attempts to design wearable and portable systems tailored to the specific plant organ with the potential to be used for future applications in the coming era of digital farms and precision agriculture.


Assuntos
Microclima , Dispositivos Eletrônicos Vestíveis , Humanos , Temperatura , Monitorização Fisiológica/métodos
8.
Sensors (Basel) ; 22(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632361

RESUMO

In recent years, soft and flexible strain sensors have found application in wearable devices for monitoring human motion and physiological parameters. Conductive textile-based sensors are good candidates for developing these sensors. However, their robust electro-mechanical connection and susceptibility to environmental factors are still an open challenge to date. In this work, the manufacturing process of a silicone-textile composite resistive strain sensor based on a conductive resistive textile encapsulated into a dual-layer of silicone rubber is reported. In the working range typical of biomedical applications (up to 50%), the proposed flexible, skin-safe and moisture resistant strain sensor exhibited high sensitivity (gauge factor of -1.1), low hysteresis (maximum hysteresis error 3.2%) and ease of shaping in custom designs through a facile manufacturing process. To test the developed flexible sensor, two applicative scenarios covering the whole working range have been considered: the recording of the chest wall expansion during respiratory activity and the capture of the elbow flexion/extension movements.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Movimento (Física) , Elastômeros de Silicone
9.
Sensors (Basel) ; 22(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957358

RESUMO

Recently, the ever-growing interest in the continuous monitoring of heart function in out-of-laboratory settings for an early diagnosis of cardiovascular diseases has led to the investigation of innovative methods for cardiac monitoring. Among others, wearables recording seismic waves induced on the chest surface by the mechanical activity of the heart are becoming popular. For what concerns wearable-based methods, cardiac vibrations can be recorded from the thorax in the form of acceleration, angular velocity, and/or displacement by means of accelerometers, gyroscopes, and fiber optic sensors, respectively. The present paper reviews the currently available wearables for measuring precordial vibrations. The focus is on sensor technology and signal processing techniques for the extraction of the parameters of interest. Lastly, the explored application scenarios and experimental protocols with the relative influencing factors are discussed for each technique. The goal is to delve into these three fundamental aspects (i.e., wearable system, signal processing, and application scenario), which are mutually interrelated, to give a holistic view of the whole process, beyond the sensor aspect alone. The reader can gain a more complete picture of this context without disregarding any of these 3 aspects.


Assuntos
Vibração , Dispositivos Eletrônicos Vestíveis , Coração , Monitorização Fisiológica , Processamento de Sinais Assistido por Computador
10.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616959

RESUMO

Global climate change and exponential population growth pose a challenge to agricultural outputs. In this scenario, novel techniques have been proposed to improve plant growth and increase crop yields. Wearable sensors are emerging as promising tools for the non-invasive monitoring of plant physiological and microclimate parameters. Features of plant wearables, such as easy anchorage to different organs, compliance with natural surfaces, high flexibility, and biocompatibility, allow for the detection of growth without impacting the plant functions. This work proposed two wearable sensors based on fiber Bragg gratings (FBGs) within silicone matrices. The use of FBGs is motivated by their high sensitivity, multiplexing capacities, and chemical inertia. Firstly, we focused on the design and the fabrication of two plant wearables with different matrix shapes tailored to specific plant organs (i.e., tobacco stem and melon fruit). Then, we described the sensors' metrological properties to investigate the sensitivity to strain and the influence of environmental factors, such as temperature and humidity, on the sensors' performance. Finally, we performed experimental tests to preliminary assess the capability of the proposed sensors to monitor dimensional changes of plants in both laboratory and open field settings. The promising results will foster key actions to improve the use of this innovative technology in smart agriculture applications for increasing crop products quality, agricultural efficiency, and profits.


Assuntos
Tecnologia de Fibra Óptica , Dispositivos Eletrônicos Vestíveis , Estudos de Viabilidade , Desenvolvimento Vegetal , Agricultura
11.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081165

RESUMO

Quantitatively assessing personal health status is gaining increasing attention due to the improvement of diagnostic technology and the increasing occurrence of chronic pathologies. Monitoring physiological parameters allows for retrieving a general overview of the personal health status. Respiratory activity can provide relevant information, especially when pathologies affect the muscles and organs involved in breathing. Among many technologies, wearables may represent a valid solution for continuous and remote monitoring of respiratory activity, thus reducing healthcare costs. The most popular wearables used in this arena are based on detecting the breathing-induced movement of the chest wall. Therefore, their use in patients with impaired chest wall motion and abnormal respiratory kinematics can be challenging, but literature is still in its infancy. This study investigates the performance of a custom wearable device for respiratory monitoring in post-stroke patients. We tested the device on six hemiplegic patients under different respiratory regimes. The estimated respiratory parameters (i.e., respiratory frequency and the timing of the respiratory phase) demonstrated good agreement with the ones provided by a gold standard device. The promising results of this pilot study encourage the exploitation of wearables on these patients that may strongly impact the treatment of chronic diseases, such as hemiplegia.


Assuntos
Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Hemiplegia , Humanos , Projetos Piloto , Taxa Respiratória
12.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214287

RESUMO

In this study, a novel wearable system for the identification of compensatory trunk movements (CTMs) in post-stroke hemiplegic patients is presented. The device is composed of seven soft sensing elements (SSEs) based on fiber Bragg grating (FBG) technology. Each SSE consists of a single FBG encapsulated into a flexible matrix to enhance the sensor's robustness and improve its compliance with the human body. The FBG's small size, light weight, multiplexing capability, and biocompatibility make the proposed wearable system suitable for multi-point measurements without any movement restriction. Firstly, its manufacturing process is presented, together with the SSEs' mechanical characterization to strain. Results of the metrological characterization showed a linear response of each SSE in the operating range. Then, the feasibility assessment of the proposed system is described. In particular, the device's capability of detecting CTMs was assessed on 10 healthy volunteers and eight hemiplegic patients while performing three tasks which are representative of typical everyday life actions. The wearable system showed good potential in detecting CTMs. This promising result may foster the use of the proposed device on post-stroke patients, aiming at assessing the proper course of the rehabilitation process both in clinical and domestic settings. Moreover, its use may aid in defining tailored strategies to improve post-stoke patients' motor recovery and quality of life.


Assuntos
Qualidade de Vida , Dispositivos Eletrônicos Vestíveis , Hemiplegia , Humanos , Movimento/fisiologia , Tronco/fisiologia
13.
Sensors (Basel) ; 21(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34450771

RESUMO

Epidural analgesia represents a clinical common practice aiming at pain mitigation. This loco-regional technique is widely used in several applications such as labor, surgery and lower back pain. It involves the injections of anesthetics or analgesics into the epidural space (ES). The ES detection is still demanding and is usually performed by the techniques named loss of resistance (LOR). In this study, we propose a novel soft system (SS) based on one fiber Bragg grating sensor (FBG) embedded in a soft polymeric matrix for LOR detection during the epidural puncture. The SS was designed to allow instrumenting the syringe's plunger without relevant modifications of the anesthetist's sensations during the procedure. After the metrological characterization of the SS, we assessed the capability of this solution in detecting LOR by carrying it out in silico and in clinical settings. For both trials, results revealed the capability of the proposed solutions in detecting the LOR and then in recording the force exerted on the plunger.


Assuntos
Analgesia Epidural , Espaço Epidural , Simulação por Computador
14.
Sensors (Basel) ; 21(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34640649

RESUMO

Plants are primary resources for oxygen and foods whose production is fundamental for our life. However, diseases and pests may interfere with plant growth and cause a significant reduction of both the quality and quantity of agriculture products. Increasing agricultural productivity is crucial for poverty reduction and food security improvements. For this reason, the 2030 Agenda for Sustainable Development gives a central role to agriculture by promoting a strong technological innovation for advancing sustainable practices at the plant level. To accomplish this aim, recently, wearable sensors and flexible electronics have been extended from humans to plants for measuring elongation, microclimate, and stressing factors that may affect the plant's healthy growth. Unexpectedly, fiber Bragg gratings (FBGs), which are very popular in health monitoring applications ranging from civil infrastructures to the human body, are still overlooked for the agriculture sector. In this work, for the first time, plant wearables based on FBG technology are proposed for the continuous and simultaneous monitoring of plant growth and environmental parameters (i.e., temperature and humidity) in real settings. The promising results demonstrated the feasibility of FBG-based sensors to work in real situations by holding the promise to advance continuous and accurate plant health growth monitoring techniques.


Assuntos
Microclima , Dispositivos Eletrônicos Vestíveis , Agricultura , Humanos , Plantas , Tecnologia
15.
Sensors (Basel) ; 20(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659958

RESUMO

Low back pain (LBP) is one of the musculoskeletal disorders that most affects workers. Among others, one of the working categories which mainly experiences such disease are video terminal workers. As it causes exploitation of the National Health Service and absenteeism in workplaces, LBP constitutes a relevant socio-economic burden. In such a scenario, a prompt detection of wrong seating postures can be useful to prevent the occurrence of this disorder. To date, many tools capable of monitoring the spinal range of motions (ROMs) are marketed, but most of them are unusable in working environments due to their bulkiness, discomfort and invasiveness. In the last decades, fiber optic sensors have made their mark allowing the creation of light and compact wearable systems. In this study, a novel wearable device embedding a Fiber Bragg Grating sensor for the detection of lumbar flexion-extensions (F/E) in seated subjects is proposed. At first, the manufacturing process of the sensing element was shown together with its mechanical characterization, that shows linear response to strain with a high correlation coefficient (R2 > 0.99) and a sensitivity value (Sε) of 0.20 nm∙mε-1. Then, the capability of the wearable device in measuring F/E in the sagittal body plane was experimentally assessed on a small population of volunteers, using a Motion Capture system (MoCap) as gold standard showing good ability of the system to match the lumbar F/E trend in time. Additionally, the lumbar ROMs were evaluated in terms of intervertebral lumbar distances (Δ d L 3 - L 1 ) and angles, exhibiting moderate to good agreement with the MoCap outputs (the maximum Mean Absolute Error obtained is ~16% in detecting Δ d L 3 - L 1 ). The proposed wearable device is the first attempt for the development of FBG-based wearable systems for workers' safety monitoring.


Assuntos
Dor Lombar/diagnóstico , Amplitude de Movimento Articular , Coluna Vertebral/fisiologia , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento , Saúde Ocupacional , Postura Sentada
16.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114180

RESUMO

Grasping is one of the first dominant motor behaviors that enable interaction of a newborn infant with its surroundings. Although atypical grasping patterns are considered predictive of neuromotor disorders and injuries, their clinical assessment suffers from examiner subjectivity, and the neuropathophysiology is poorly understood. Therefore, the combination of technology with functional magnetic resonance imaging (fMRI) may help to precisely map the brain activity associated with grasping and thus provide important insights into how functional outcomes can be improved following cerebral injury. This work introduces an MR-compatible device (i.e., smart graspable device (SGD)) for detecting grasping actions in newborn infants. Electromagnetic interference immunity (EMI) is achieved using a fiber Bragg grating sensor. Its biocompatibility and absence of electrical signals propagating through the fiber make the safety profile of the SGD particularly favorable for use with fragile infants. Firstly, the SGD design, fabrication, and metrological characterization are described, followed by preliminary assessments on a preterm newborn infant and an adult during an fMRI experiment. The results demonstrate that the combination of the SGD and fMRI can safely and precisely identify the brain activity associated with grasping behavior, which may enable early diagnosis of motor impairment and help guide tailored rehabilitation programs.


Assuntos
Força da Mão , Imageamento por Ressonância Magnética , Adulto , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Materiais Inteligentes
17.
Sensors (Basel) ; 20(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963696

RESUMO

Musculoskeletal disorders are the most common form of occupational ill-health. Neck pain is one of the most prevalent musculoskeletal disorders experienced by computer workers. Wrong postural habits and non-compliance of the workstation to ergonomics guidelines are the leading causes of neck pain. These factors may also alter respiratory functions. Health and safety interventions can reduce neck pain and, more generally, the symptoms of musculoskeletal disorders and reduce the consequent economic burden. In this work, a multi-parametric wearable system based on two fiber Bragg grating sensors is proposed for monitoring neck movements and breathing activity of computer workers. The sensing elements were positioned on the neck, in the frontal and sagittal planes, to monitor: (i) flexion-extension and axial rotation repetitions, and (ii) respiratory frequency. In this pilot study, five volunteers were enrolled and performed five repetitions of both flexion-extension and axial rotation, and ten breaths of both quite breathing and tachypnea. Results showed the good performances of the proposed system in monitoring the aforementioned parameters when compared to optical reference systems. The wearable system is able to well-match the trend in time of the neck movements (both flexion-extension and axial rotation) and to estimate mean and breath-by-breath respiratory frequency values with percentage errors ≤6.09% and ≤1.90%, during quiet breathing and tachypnea, respectively.


Assuntos
Monitorização Fisiológica/métodos , Pescoço/fisiologia , Taxa Respiratória/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Computadores , Ergonomia , Feminino , Humanos , Masculino , Monitorização Fisiológica/instrumentação , Projetos Piloto , Processamento de Sinais Assistido por Computador , Adulto Jovem
18.
BMC Musculoskelet Disord ; 20(1): 546, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731893

RESUMO

BACKGROUND: Wearable sensors are acquiring more and more influence in diagnostic and rehabilitation field to assess motor abilities of people with neurological or musculoskeletal impairments. The aim of this systematic literature review is to analyze the wearable systems for monitoring shoulder kinematics and their applicability in clinical settings and rehabilitation. METHODS: A comprehensive search of PubMed, Medline, Google Scholar and IEEE Xplore was performed and results were included up to July 2019. All studies concerning wearable sensors to assess shoulder kinematics were retrieved. RESULTS: Seventy-three studies were included because they have fulfilled the inclusion criteria. The results showed that magneto and/or inertial sensors are the most used. Wearable sensors measuring upper limb and/or shoulder kinematics have been proposed to be applied in patients with different pathological conditions such as stroke, multiple sclerosis, osteoarthritis, rotator cuff tear. Sensors placement and method of attachment were broadly heterogeneous among the examined studies. CONCLUSIONS: Wearable systems are a promising solution to provide quantitative and meaningful clinical information about progress in a rehabilitation pathway and to extrapolate meaningful parameters in the diagnosis of shoulder pathologies. There is a strong need for development of this novel technologies which undeniably serves in shoulder evaluation and therapy.


Assuntos
Monitorização Ambulatorial/instrumentação , Doenças Musculoesqueléticas/diagnóstico , Doenças do Sistema Nervoso/diagnóstico , Articulação do Ombro/fisiopatologia , Materiais Inteligentes , Telemetria/instrumentação , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Idoso , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Musculoesqueléticas/fisiopatologia , Doenças Musculoesqueléticas/reabilitação , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/reabilitação , Valor Preditivo dos Testes , Prognóstico , Amplitude de Movimento Articular , Adulto Jovem
19.
Sensors (Basel) ; 19(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248200

RESUMO

Among all the vital signs, respiratory rate remains the least measured in several scenarios, mainly due to the intrusiveness of the sensors usually adopted. For this reason, all contactless monitoring systems are gaining increasing attention in this field. In this paper, we present a measuring system for contactless measurement of the respiratory pattern and the extraction of breath-by-breath respiratory rate. The system consists of a laptop's built-in RGB camera and an algorithm for post-processing of acquired video data. From the recording of the chest movements of a subject, the analysis of the pixel intensity changes yields a waveform indicating respiratory pattern. The proposed system has been tested on 12 volunteers, both males and females seated in front of the webcam, wearing both slim-fit and loose-fit t-shirts. The pressure-drop signal recorded at the level of nostrils with a head-mounted wearable device was used as reference respiratory pattern. The two methods have been compared in terms of mean of absolute error, standard error, and percentage error. Additionally, a Bland-Altman plot was used to investigate the bias between methods. Results show the ability of the system to record accurate values of respiratory rate, with both slim-fit and loose-fit clothing. The measuring system shows better performance on females. Bland-Altman analysis showed a bias of -0.01 breaths · min - 1 , with respiratory rate values between 10 and 43 breaths · min - 1 . Promising performance has been found in the preliminary tests simulating tachypnea.


Assuntos
Respiração , Taxa Respiratória/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Feminino , Humanos , Masculino , Taquipneia/fisiopatologia , Adulto Jovem
20.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795595

RESUMO

There is an ever-growing demand for measuring respiratory variables during a variety of applications, including monitoring in clinical and occupational settings, and during sporting activities and exercise. Special attention is devoted to the monitoring of respiratory rate because it is a vital sign, which responds to a variety of stressors. There are different methods for measuring respiratory rate, which can be classed as contact-based or contactless. The present paper provides an overview of the currently available contact-based methods for measuring respiratory rate. For these methods, the sensing element (or part of the instrument containing it) is attached to the subject's body. Methods based upon the recording of respiratory airflow, sounds, air temperature, air humidity, air components, chest wall movements, and modulation of the cardiac activity are presented. Working principles, metrological characteristics, and applications in the respiratory monitoring field are presented to explore potential development and applicability for each method.


Assuntos
Monitorização Fisiológica/métodos , Respiração , Taxa Respiratória/fisiologia , Exercício Físico/fisiologia , Humanos , Parede Torácica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA