Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Plant J ; 117(2): 449-463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846604

RESUMO

Heracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H. sosnowskyi to produce linear furanocoumarins (FCs), photosensitizing compounds, makes it very dangerous. At the same time, linear FCs are compounds with high pharmaceutical value used in skin disease therapies. Despite this high importance, it has not been the focus of genetic and genomic studies. Here, we report a chromosome-scale assembly of Sosnowsky's hogweed genome. Genomic analysis revealed an unusually high number of genes (55106) in the hogweed genome, in contrast to the 25-35 thousand found in most plants. However, we did not find any traces of recent whole-genome duplications not shared with its confamiliar, Daucus carota (carrot), which has approximately thirty thousand genes. The analysis of the genomic proximity of duplicated genes indicates on tandem duplications as a main reason for this increase. We performed a genome-wide search of the genes of the FC biosynthesis pathway and surveyed their expression in aboveground plant parts. Using a combination of expression data and phylogenetic analysis, we found candidate genes for psoralen synthase and experimentally showed the activity of one of them using a heterologous yeast expression system. These findings expand our knowledge on the evolution of gene space in plants and lay a foundation for further analysis of hogweed as an invasive plant and as a source of FCs.


Assuntos
Daucus carota , Heracleum , Humanos , Heracleum/genética , Espécies Introduzidas , Ecossistema , Filogenia , Duplicação Gênica
2.
BMC Biol ; 22(1): 52, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439107

RESUMO

BACKGROUND: Capsella bursa-pastoris, a cosmopolitan weed of hybrid origin, is an emerging model object for the study of early consequences of polyploidy, being a fast growing annual and a close relative of Arabidopsis thaliana. The development of this model is hampered by the absence of a reference genome sequence. RESULTS: We present here a subgenome-resolved chromosome-scale assembly and a genetic map of the genome of Capsella bursa-pastoris. It shows that the subgenomes are mostly colinear, with no massive deletions, insertions, or rearrangements in any of them. A subgenome-aware annotation reveals the lack of genome dominance-both subgenomes carry similar number of genes. While most chromosomes can be unambiguously recognized as derived from either paternal or maternal parent, we also found homeologous exchange between two chromosomes. It led to an emergence of two hybrid chromosomes; this event is shared between distant populations of C. bursa-pastoris. The whole-genome analysis of 119 samples belonging to C. bursa-pastoris and its parental species C. grandiflora/rubella and C. orientalis reveals introgression from C. orientalis but not from C. grandiflora/rubella. CONCLUSIONS: C. bursa-pastoris does not show genome dominance. In the earliest stages of evolution of this species, a homeologous exchange occurred; its presence in all present-day populations of C. bursa-pastoris indicates on a single origin of this species. The evidence coming from whole-genome analysis challenges the current view that C. grandiflora/rubella was a direct progenitor of C. bursa-pastoris; we hypothesize that it was an extinct (or undiscovered) species sister to C. grandiflora/rubella.


Assuntos
Arabidopsis , Capsella , Rubéola (Sarampo Alemão) , Capsella/genética , Genômica , Poliploidia
3.
PLoS Comput Biol ; 19(1): e1010743, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626392

RESUMO

Interspecific gene comparisons are the keystones for many areas of biological research and are especially important for the translation of knowledge from model organisms to economically important species. Currently they are hampered by the low resolution of methods based on sequence analysis and by the complex evolutionary history of eukaryotic genes. This is especially critical for plants, whose genomes are shaped by multiple whole genome duplications and subsequent gene loss. This requires the development of new methods for comparing the functions of genes in different species. Here, we report ISEEML (Interspecific Similarity of Expression Evaluated using Machine Learning)-a novel machine learning-based algorithm for interspecific gene classification. In contrast to previous studies focused on sequence similarity, our algorithm focuses on functional similarity inferred from the comparison of gene expression profiles. We propose novel metrics for expression pattern similarity-expression score (ES)-that is suitable for species with differing morphologies. As a proof of concept, we compare detailed transcriptome maps of Arabidopsis thaliana, the model species, Zea mays (maize) and Fagopyrum esculentum (common buckwheat), which are species that represent distant clades within flowering plants. The classifier resulted in an AUC of 0.91; under the ES threshold of 0.5, the specificity was 94%, and sensitivity was 72%.


Assuntos
Arabidopsis , Transcriptoma , Transcriptoma/genética , Arabidopsis/genética , Evolução Biológica , Regulação da Expressão Gênica de Plantas/genética , Zea mays/genética
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769014

RESUMO

Chickpea (Cicer arietinum L.) is a major grain legume and a good source of plant-based protein. However, comprehensive knowledge of flowering time control in Cicer is lacking. In this study, we acquire high-throughput transcriptome sequencing data and analyze changes in gene expression during floral transition in the early flowering cultivar ICCV 96029, later flowering C. arietinum accessions, and two wild species, C. reticulatum and C. echinospermum. We identify Cicer orthologs of A. thaliana flowering time genes and analyze differential expression of 278 genes between four species/accessions, three tissue types, and two conditions. Our results show that the differences in gene expression between ICCV 96029 and other cultivated chickpea accessions are vernalization-dependent. In addition, we highlight the role of FTa3, an ortholog of FLOWERING LOCUS T in Arabidopsis, in the vernalization response of cultivated chickpea. A common set of differentially expressed genes was found for all comparisons between wild species and cultivars. The direction of expression change for different copies of the FT-INTERACTING PROTEIN 1 gene was variable in different comparisons, which suggests complex mechanisms of FT protein transport. Our study makes a contribution to the understanding of flowering time control in Cicer, and can provide genetic strategies to further improve this important agronomic trait.


Assuntos
Cicer , Cicer/genética , Transcriptoma , Fenótipo , Proteínas de Plantas/genética
5.
Nature ; 533(7603): 397-401, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193686

RESUMO

Fitness landscapes depict how genotypes manifest at the phenotypic level and form the basis of our understanding of many areas of biology, yet their properties remain elusive. Previous studies have analysed specific genes, often using their function as a proxy for fitness, experimentally assessing the effect on function of single mutations and their combinations in a specific sequence or in different sequences. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported. Here we visualize an extensive region of the local fitness landscape of the green fluorescent protein from Aequorea victoria (avGFP) by measuring the native function (fluorescence) of tens of thousands of derivative genotypes of avGFP. We show that the fitness landscape of avGFP is narrow, with 3/4 of the derivatives with a single mutation showing reduced fluorescence and half of the derivatives with four mutations being completely non-fluorescent. The narrowness is enhanced by epistasis, which was detected in up to 30% of genotypes with multiple mutations and mostly occurred through the cumulative effect of slightly deleterious mutations causing a threshold-like decrease in protein stability and a concomitant loss of fluorescence. A model of orthologous sequence divergence spanning hundreds of millions of years predicted the extent of epistasis in our data, indicating congruence between the fitness landscape properties at the local and global scales. The characterization of the local fitness landscape of avGFP has important implications for several fields including molecular evolution, population genetics and protein design.


Assuntos
Aptidão Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Animais , Epistasia Genética , Evolução Molecular , Fluorescência , Estudos de Associação Genética , Genótipo , Hidrozoários/química , Hidrozoários/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo
6.
Nucleic Acids Res ; 48(12): 6699-6714, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479626

RESUMO

Non-coding RNAs (ncRNAs) participate in various biological processes, including regulating transcription and sustaining genome 3D organization. Here, we present a method termed Red-C that exploits proximity ligation to identify contacts with the genome for all RNA molecules present in the nucleus. Using Red-C, we uncovered the RNA-DNA interactome of human K562 cells and identified hundreds of ncRNAs enriched in active or repressed chromatin, including previously undescribed RNAs. Analysis of the RNA-DNA interactome also allowed us to trace the kinetics of messenger RNA production. Our data support the model of co-transcriptional intron splicing, but not the hypothesis of the circularization of actively transcribed genes.


Assuntos
Cromatina/genética , DNA/genética , Genoma/genética , RNA não Traduzido/genética , Transcrição Gênica , Núcleo Celular/genética , Humanos , RNA Mensageiro/genética , RNA não Traduzido/isolamento & purificação , Fatores de Transcrição/genética
7.
Nucleic Acids Res ; 47(3): 1373-1388, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30517674

RESUMO

An important antibiotic target, DNA gyrase is an essential bacterial enzyme that introduces negative supercoils into DNA and relaxes positive supercoils accumulating in front of moving DNA and RNA polymerases. By altering the superhelical density, gyrase may regulate expression of bacterial genes. The information about how gyrase is distributed along genomic DNA and whether its distribution is affected by drugs is scarce. During catalysis, gyrase cleaves both DNA strands forming a covalently bound intermediate. By exploiting the ability of several topoisomerase poisons to stabilize this intermediate we developed a ChIP-Seq-based approach to locate, with single nucleotide resolution, DNA gyrase cleavage sites (GCSs) throughout the Escherichia coli genome. We identified an extended gyrase binding motif with phased 10-bp G/C content variation, indicating that bending ability of DNA contributes to gyrase binding. We also found that GCSs are enriched in extended regions located downstream of highly transcribed operons. Transcription inhibition leads to redistribution of gyrase suggesting that the enrichment is functionally significant. Our method can be applied for precise mapping of prokaryotic and eukaryotic type II topoisomerases cleavage sites in a variety of organisms and paves the way for future studies of various topoisomerase inhibitors.


Assuntos
DNA Girase/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Mapeamento Cromossômico/métodos , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica
8.
Nucleic Acids Res ; 47(13): 6858-6870, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194871

RESUMO

Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding genes in mitochondrial genomes of four Nematomorpha species. Strikingly, both arms of the inverted repeats encode conserved regions of the amino acid sequence. We confirmed enzymatic activity of the respiratory complex I encoded by inverted repeat-containing genes. The nucleotide composition of inverted repeats suggests strong selection at the amino acid level in these regions. We conclude that the inverted repeat-containing genes are transcribed and translated into functional proteins. The survey of available mitochondrial genomes reveals that several other organisms possess similar albeit shorter embedded repeats. Mitochondrial genomes of Nematomorpha demonstrate an extraordinary evolutionary compromise where protein function and stringent secondary structure elements within the coding regions are preserved simultaneously.


Assuntos
Genes de Helmintos/genética , Genes Mitocondriais/genética , Código Genético , Genoma Mitocondrial , Helmintos/genética , Sequências Repetidas Invertidas/genética , Sequência de Aminoácidos , Animais , Composição de Bases , Sequência de Bases , DNA de Helmintos/genética , DNA Ribossômico/genética , Complexo I de Transporte de Elétrons/genética , Evolução Molecular , Feminino , Proteínas de Helminto/genética , Masculino , Consumo de Oxigênio , RNA de Helmintos/genética , RNA Ribossômico 18S/genética , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
9.
Proc Natl Acad Sci U S A ; 115(10): E2477-E2486, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463761

RESUMO

Polypedilum vanderplanki is a striking and unique example of an insect that can survive almost complete desiccation. Its genome and a set of dehydration-rehydration transcriptomes, together with the genome of Polypedilum nubifer (a congeneric desiccation-sensitive midge), were recently released. Here, using published and newly generated datasets reflecting detailed transcriptome changes during anhydrobiosis, as well as a developmental series, we show that the TCTAGAA DNA motif, which closely resembles the binding motif of the Drosophila melanogaster heat shock transcription activator (Hsf), is significantly enriched in the promoter regions of desiccation-induced genes in P. vanderplanki, such as genes encoding late embryogenesis abundant (LEA) proteins, thioredoxins, or trehalose metabolism-related genes, but not in P. nubifer Unlike P. nubifer, P. vanderplanki has double TCTAGAA sites upstream of the Hsf gene itself, which is probably responsible for the stronger activation of Hsf in P. vanderplanki during desiccation compared with P. nubifer To confirm the role of Hsf in desiccation-induced gene activation, we used the Pv11 cell line, derived from P. vanderplanki embryo. After preincubation with trehalose, Pv11 cells can enter anhydrobiosis and survive desiccation. We showed that Hsf knockdown suppresses trehalose-induced activation of multiple predicted Hsf targets (including P. vanderplanki-specific LEA protein genes) and reduces the desiccation survival rate of Pv11 cells fivefold. Thus, cooption of the heat shock regulatory system has been an important evolutionary mechanism for adaptation to desiccation in P. vanderplanki.


Assuntos
Chironomidae/fisiologia , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Insetos/metabolismo , Animais , Evolução Biológica , Chironomidae/genética , Desidratação , Feminino , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Proteínas de Insetos/genética , Masculino , Estresse Fisiológico
10.
Mol Phylogenet Evol ; 144: 106710, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846708

RESUMO

The evolution of tRNA genes in mitochondrial (mt) genomes is a complex process that includes duplications, degenerations, and transpositions, as well as a specific process of identity change through mutations in the anticodon (tRNA gene remolding or tRNA gene recruitment). Using amphipod-specific tRNA models for annotation, we show that tRNA duplications are more common in the mt genomes of amphipods than what was revealed by previous annotations. Seventeen cases of tRNA gene duplications were detected in the mt genomes of amphipods, and ten of them were tRNA genes that underwent remolding. The additional tRNA gene findings were verified using phylogenetic analysis and genetic distance analysis. The majority of remolded tRNA genes (seven out of ten cases) were found in the mt genomes of endemic amphipod species from Lake Baikal. All additional mt tRNA genes arose independently in the Baikalian amphipods, indicating the unusual plasticity of tRNA gene evolution in these species assemblages. The possible reasons for the unusual abundance of additional tRNA genes in the mt genomes of Baikalian amphipods are discussed. The amphipod-specific tRNA models developed for MiTFi refine existing predictions of tRNA genes in amphipods and reveal additional cases of duplicated tRNA genes overlooked by using less specific Metazoa-wide models. The application of these models for mt tRNA gene prediction will be useful for the correct annotation of mt genomes of amphipods and probably other crustaceans.


Assuntos
Anfípodes/classificação , Anfípodes/genética , Duplicação Gênica , Genoma Mitocondrial/genética , RNA de Transferência/genética , Animais , Evolução Molecular , Genes Mitocondriais/fisiologia , Especiação Genética , Lagos , Mutação , Filogenia , Filogeografia , Sibéria
11.
Nucleic Acids Res ; 46(2): 765-781, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29220521

RESUMO

RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3' to 5' on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.


Assuntos
Mitocôndrias/genética , Edição de RNA , RNA Mitocondrial/genética , Trypanosomatina/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Genoma Mitocondrial/genética , Genoma de Protozoário/genética , Mitocôndrias/metabolismo , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , Splicing de RNA , RNA Mitocondrial/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosomatina/metabolismo
12.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158036

RESUMO

Advanced paternal age at fertilization is a risk factor for multiple disorders in offspring and may be linked to age-related epigenetic changes in the father's sperm. An understanding of aging-related epigenetic changes in sperm and environmental factors that modify such changes is needed. Here, we characterize changes in sperm small non-coding RNA (sncRNA) between young pubertal and mature rats. We also analyze the modification of these changes by exposure to environmental xenobiotic 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). sncRNA libraries prepared from epididymal spermatozoa were sequenced and analyzed using DESeq 2. The distribution of small RNA fractions changed with age, with fractions mapping to rRNA and lncRNA decreasing and fractions mapping to tRNA and miRNA increasing. In total, 249 miRNA, 908 piRNA and 227 tRNA-derived RNA were differentially expressed (twofold change, false discovery rate (FDR) p ≤ 0.05) between age groups in control animals. Differentially expressed miRNA and piRNA were enriched for protein-coding targets involved in development and metabolism, while piRNA were enriched for long terminal repeat (LTR) targets. BDE-47 accelerated age-dependent changes in sncRNA in younger animals, decelerated these changes in older animals and increased the variance in expression of all sncRNA. Our results indicate that the natural aging process has profound effects on sperm sncRNA profiles and this effect may be modified by environmental exposure.


Assuntos
Envelhecimento/fisiologia , Exposição Ambiental , Retardadores de Chama/toxicidade , Pequeno RNA não Traduzido/genética , Espermatozoides/metabolismo , Animais , Animais Recém-Nascidos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Parto/efeitos dos fármacos , Parto/genética , Parto/metabolismo , Idade Paterna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Pequeno RNA não Traduzido/metabolismo , Ratos , Ratos Wistar , Espermatozoides/efeitos dos fármacos , Fatores de Tempo
13.
Genome Res ; 26(1): 70-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518482

RESUMO

Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)(+) RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin.


Assuntos
Cromatina/genética , Drosophila melanogaster/genética , Genoma de Inseto , Transcrição Gênica , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , Simulação por Computador , Modelos Moleculares , Nucleossomos/genética , Nucleossomos/metabolismo , Cromossomos Politênicos/genética , Análise de Sequência de RNA
14.
BMC Plant Biol ; 19(Suppl 1): 49, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813912

RESUMO

BACKGROUND: Transcriptome map is a powerful tool for a variety of biological studies; transcriptome maps that include different organs, tissues, cells and stages of development are currently available for at least 30 plants. Some of them include samples treated by environmental or biotic stresses. However, most studies explore only limited set of organs and developmental stages (leaves or seedlings). In order to provide broader view of organ-specific strategies of cold stress response we studied expression changes that follow exposure to cold (+ 4 °C) in different aerial parts of plant: cotyledons, hypocotyl, leaves, young flowers, mature flowers and seeds using RNA-seq. RESULTS: The results on differential expression in leaves are congruent with current knowledge on stress response pathways, in particular, the role of CBF genes. In other organs, both essence and dynamics of gene expression changes are different. We show the involvement of genes that are confined to narrow expression patterns in non-stress conditions into stress response. In particular, the genes that control cell wall modification in pollen, are activated in leaves. In seeds, predominant pattern is the change of lipid metabolism. CONCLUSIONS: Stress response is highly organ-specific; different pathways are involved in this process in each type of organs. The results were integrated with previously published transcriptome map of Arabidopsis thaliana and used for an update of a public database TraVa: http://travadb.org/browse/Species=AthStress .


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
15.
BMC Plant Biol ; 19(Suppl 1): 51, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813888

RESUMO

BACKGROUND: More than 70 cytoplasmic male sterility (CMS) types have been identified in Helianthus, but only for less than half of them, research of mitochondrial organization has been conducted. Moreover, complete mitochondrion sequences have only been published for two CMS sources - PET1 and PET2. It has been demonstrated that other sunflower CMS sources like MAX1, significantly differ from the PET1 and PET2 types. However, possible molecular causes for the CMS induction by MAX1 have not yet been proposed. In the present study, we have investigated structural changes in the mitochondrial genome of HA89 (MAX1) CMS sunflower line in comparison to the fertile mitochondrial genome. RESULTS: Eight significant major reorganization events have been determined in HA89 (MAX1) mtDNA: one 110 kb inverted region, four deletions of 439 bp, 978 bp, 3183 bp and 14,296 bp, respectively, and three insertions of 1999 bp, 5272 bp and 6583 bp. The rearrangements have led to functional changes in the mitochondrial genome of HA89 (MAX1) resulting in the complete elimination of orf777 and the appearance of new ORFs - orf306, orf480, orf645 and orf1287. Aligning the mtDNA of the CMS sources PET1 and PET2 with MAX1 we found some common reorganization features in their mitochondrial genome sequences. CONCLUSION: The new open reading frame orf1287, representing a chimeric atp6 gene, may play a key role in MAX1 CMS phenotype formation in sunflower, while the contribution of other mitochondrial reorganizations seems to appear negligible for the CMS development.


Assuntos
Genoma Mitocondrial/genética , Helianthus/genética , Helianthus/fisiologia , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética
16.
Nucleic Acids Res ; 45(6): 3297-3307, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28204574

RESUMO

During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , DNA/química , DNA/metabolismo , DNA Helicases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética
17.
Proc Natl Acad Sci U S A ; 113(27): 7626-31, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325762

RESUMO

Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated (Cas) immunity relies on adaptive acquisition of spacers-short fragments of foreign DNA. For the type I-E CRISPR-Cas system from Escherichia coli, efficient "primed" adaptation requires Cas effector proteins and a CRISPR RNA (crRNA) whose spacer partially matches a segment (protospacer) in target DNA. Primed adaptation leads to selective acquisition of additional spacers from DNA molecules recognized by the effector-crRNA complex. When the crRNA spacer fully matches a protospacer, CRISPR interference-that is, target destruction without acquisition of additional spacers-is observed. We show here that when the rate of degradation of DNA with fully and partially matching crRNA targets is made equal, fully matching protospacers stimulate primed adaptation much more efficiently than partially matching ones. The result indicates that different functional outcomes of CRISPR-Cas response to two kinds of protospacers are not caused by different structures formed by the effector-crRNA complex but are due to the more rapid destruction of targets with fully matching protospacers.


Assuntos
Sistemas CRISPR-Cas , DNA Intergênico , Escherichia coli/fisiologia , Adaptação Biológica , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo
18.
Plant J ; 91(2): 278-291, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28387959

RESUMO

Polyploidization and subsequent sub- and neofunctionalization of duplicated genes represent a major mechanism of plant genome evolution. Capsella bursa-pastoris, a widespread ruderal plant, is a recent allotetraploid and, thus, is an ideal model organism for studying early changes following polyploidization. We constructed a high-quality assembly of C. bursa-pastoris genome and a transcriptome atlas covering a broad sample of organs and developmental stages (available online at http://travadb.org/browse/Species=Cbp). We demonstrate that expression of homeologs is mostly symmetric between subgenomes, and identify a set of homeolog pairs with discordant expression. Comparison of promoters within such pairs revealed emerging asymmetry of regulatory elements. Among them there are multiple binding sites for transcription factors controlling the regulation of photosynthesis and plant development by light (PIF3, HY5) and cold stress response (CBF). These results suggest that polyploidization in C. bursa-pastoris enhanced its plasticity of response to light and temperature, and allowed substantial expansion of its distribution range.


Assuntos
Capsella/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poliploidia , Sequências Reguladoras de Ácido Nucleico , Anotação de Sequência Molecular
19.
BMC Genomics ; 19(1): 602, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092758

RESUMO

BACKGROUND: While photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels. RESULTS: Here, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants. In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa. CONCLUSIONS: Full heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.


Assuntos
Evolução Molecular , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Micorrizas/classificação , Micorrizas/genética , Proteínas Nucleares/genética , Análise de Sequência de RNA/métodos , Núcleo Celular/genética , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética
20.
J Exp Bot ; 69(8): 1955-1966, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29394372

RESUMO

Jasmonates are plant hormones that induce the accumulation of many secondary metabolites, such as rutin in buckwheat, via regulation of jasmonate-responsive transcription factors. Here, we report on the identification of a clade of jasmonate-responsive subgroup 4 MYB transcription factors, FtMYB13, FtMYB14, FtMYB15, and FtMYB16, which directly repress rutin biosynthesis in Fagopyrum tataricum. Immunoblot analysis showed that FtMYB13, FtMYB14, and FtMYB15 could be degraded via the 26S proteasome in the COI1-dependent jasmonate signaling pathway, and that this degradation is due to the SID motif in their C-terminus. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that FtMYB13, FtMYB14, and FtMYB15 interact with the importin protein Sensitive to ABA and Drought 2 (FtSAD2) in stem and inflorescence. Furthermore, the key repressor of jasmonate signaling FtJAZ1 specifically interacts with FtMYB13. Point mutation analysis showed that the conserved Asp residue of the SID domain contributes to mediating protein-protein interaction. Protoplast transient activation assays demonstrated that FtMYB13, FtMYB14, and FtMYB15 directly repress phenylalanine ammonia lyase (FtPAL) gene expression, and FtSAD2 and FtJAZ1 significantly promote the repressing activity of FtMYBs. These findings may ultimately be promising for further engineering of plant secondary metabolism.


Assuntos
Ciclopentanos/metabolismo , Fagopyrum/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Rutina/biossíntese , Fatores de Transcrição/metabolismo , Fagopyrum/química , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA