RESUMO
Policy makers require high-level summaries of biodiversity change. However, deriving such summaries from raw biodiversity data is a complex process involving several intermediary stages. In this paper, we describe an operational workflow for generating annual estimates of species occupancy at national scales from raw species occurrence data, which can be used to construct a range of policy-relevant biodiversity indicators. We describe the workflow in detail: from data acquisition, data assessment and data manipulation, through modelling, model evaluation, application and dissemination. At each stage, we draw on our experience developing and applying the workflow for almost a decade to outline the challenges that analysts might face. These challenges span many areas of ecology, taxonomy, data science, computing and statistics. In our case, the principal output of the workflow is annual estimates of occupancy, with measures of uncertainty, for over 5000 species in each of several defined 'regions' (e.g. countries, protected areas, etc.) of the UK from 1970 to 2019. This data product corresponds closely to the notion of a species distribution Essential Biodiversity Variable (EBV). Throughout the paper, we highlight methodologies that might not be applicable outside of the UK and suggest alternatives. We also highlight areas where the workflow can be improved; in particular, methods are needed to mitigate and communicate the risk of bias arising from the lack of representativeness that is typical of biodiversity data. Finally, we revisit the 'ideal' and 'minimal' criteria for species distribution EBVs laid out in previous contributions and pose some outstanding questions that should be addressed as a matter of priority. Going forward, we hope that this paper acts as a template for research groups around the world seeking to develop similar data products.
Assuntos
Biodiversidade , Ecologia , Fluxo de Trabalho , Ecologia/métodosRESUMO
There is increased global and national attention on the need for effective strategies to control zoonotic diseases. Quick, effective action is, however, hampered by poor evidence-bases and limited coordination between stakeholders from relevant sectors such as public and animal health, wildlife and forestry sectors at different scales, who may not usually work together. The OneHealth approach recognises the value of cross-sectoral evaluation of human, animal and environmental health questions in an integrated, holistic and transdisciplinary manner to reduce disease impacts and/or mitigate risks. Co-production of knowledge is also widely advocated to improve the quality and acceptability of decision-making across sectors and may be particularly important when it comes to zoonoses. This paper brings together OneHealth and knowledge co-production and reflects on lessons learned for future OneHealth co-production processes by describing a process implemented to understand spill-over and identify disease control and mitigation strategies for a zoonotic disease in Southern India (Kyasanur Forest Disease). The co-production process aimed to develop a joint decision-support tool with stakeholders, and we complemented our approach with a simple retrospective theory of change on researcher expectations of the system-level outcomes of the co-production process. Our results highlight that while co-production in OneHealth is a difficult and resource intensive process, requiring regular iterative adjustments and flexibility, the beneficial outcomes justify its adoption. A key future aim should be to improve and evaluate the degree of inter-sectoral collaboration required to achieve the aims of OneHealth. We conclude by providing guidelines based on our experience to help funders and decision-makers support future co-production processes.