RESUMO
In vitro determination of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies induced in serum samples from recipients of the CoronaVac vaccine showed a short protection period against the original virus strain and limited protection against variants of concern. These data provide support for vaccine boosters, especially variants of concern circulate.
Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , SARS-CoV-2RESUMO
In addition to fever, rash, and arthralgia/arthritis, myalgia is another dominant symptom in Chikungunya virus (CHIKV) infection. How CHIKV induces myalgia is unclear. To better understand the viral factors involved in CHIKV-induced myalgia, CHIKVs were isolated from patients with and without myalgia designated myalgia-CHIKV and mild-CHIKV, respectively. The response of myoblasts to infection by the two groups of clinical isolates of CHIKV was investigated. Both groups of CHIKV replicated well in primary human myoblasts. However, the myalgia-CHIKVs replicated to a higher titer and caused the death of infected myoblast more rapidly than the mild-CHIKVs. CHIKV-infected myoblasts increased production of four out of five inflammatory cytokines examined (MCP-1, IP-10, MIP-1α, and IL-8) in comparison to mock-infected cells. Comparison between the myoblast inflammatory cytokine responses showed that myalgia-CHIKVs were stronger activators of cytokines than mild-CHIKVs. This means that recent epidemic strains of CHIKV exhibited different degrees of myoblast permissiveness as evidenced by differences in the ability to replicate and to stimulate inflammatory responses in myoblasts. This data suggest that the myopathic syndrome in recent epidemics is dependent upon the strain of CHIKV.
Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Mialgia/virologia , Mioblastos/imunologia , Mioblastos/virologia , Replicação Viral , Adulto , Células Cultivadas , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/patologia , Vírus Chikungunya/crescimento & desenvolvimento , Vírus Chikungunya/isolamento & purificação , Citocinas/metabolismo , Humanos , Carga ViralRESUMO
The recent outbreak of Chikungunya virus in Thailand caused a rheumatic fever associated with considerable morbidity and fatalities. Thus, it is important to identify biomarker(s) of severe disease induced by this threatening arbovirus. Putative biomarkers in cases of chikungunya fever during an outbreak in the southern part of Thailand in 2009-2010 were identified. Sixty-two patients who had developed fever and myalgia, with or without arthralgia/arthritis, were enrolled and grouped into severe chikungunya fever (CHIKF) (n= 15), mild CHIKF (n= 20) and non-CHIKF (n= 27) to investigate circulating immunological mediators that might serve as markers of severity. Blood samples were taken at presentation (day 1) and 30 days later (day 30) and plasma concentrations of interleukin (IL)-1ß, IL-6, IL-8, IL-17, tumor necrosis factor-alpha, monocyte chemotactic protein-1 (MCP-1), matrix metalloproteinase-1, tissue inhibitor of matrix metalloproteinase-1 and viral load were measured by ELISA. On day 1, severe CHIKF and mild CHIKF groups had viral loads of 10(8.5) and 10(8.3) of RNA copies/mL, respectively. At presentation, all CHIKF patients had circulating concentrations of IL-6 and MCP-1 higher than did non-CHIKF patients, whereas amongst the CHKF patients, the severe CHIKF patients had higher IL-6 concentrations than did mild CHIKF patients. Interestingly, severe CHIKF patients had significantly lower concentrations of circulating IL-8 than the other groups of patients, suggesting that high concentrations of IL-6 and MCP-1 with low concentrations of IL-8 may be a determinant of severe chikungunya virus infection.
Assuntos
Infecções por Alphavirus/sangue , Quimiocina CCL2/sangue , Febre/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Adulto , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Febre de Chikungunya , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/fisiologia , Surtos de Doenças , Feminino , Febre/epidemiologia , Febre/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Tailândia , Adulto JovemRESUMO
We determined the levels of neutralizing antibodies against the SARS-CoV-2 ancestral strain, Delta and Omicron variants of concern (VOCs), in 125 healthcare workers who received CoronaVac as their primary vaccination and later received either a single ChAdOx1 or a combi-nation of two consecutive boosters using either two ChAdOx1 doses or a ChAdOx1 or BNT162b2 as the primary and second boosters, respectively, or two doses of BNT162b2. The titers 12 weeks after primary vaccination were inadequate to neutralize all strains. After a single ChAdOx1 booster, the levels of neutralization at Day 30 varied significantly, with only a small proportion of participants developing neutralizing titers against Omicron at Day 7 and 30. The two doses of ChAdOx1 as the booster induced the lowest activity. A combination ChAdOx1 and BNT162b2 induced greater neutralization than by two doses of ChAdOx1. Two doses of BNT162b2 as the booster had the maximal activity against Omicron VOC.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is found in regions where dengue (DENV) and chikungunya (CHIKV) viruses are endemic. Any serological cross-reactivity between DENV, CHIKV, and SARS-CoV-2 is significant as it could lead to misdiagnosis, increased severity, or cross-protection. This study examined the potential cross-reactivity of anti-DENV and CHIKV antibodies with SARS-CoV-2 using acute and convalescent-phase samples collected before the SARS-CoV-2 pandemic. These included healthy, normal human (NHS, n = 6), CHIKV-positive (n = 14 pairs acute and convalescent), primary DENV-positive (n = 20 pairs), secondary DENV-positive (n = 20 pairs), and other febrile illnesses sera (n = 23 pairs). Samples were tested using an in-house SARS-CoV-2 and a EUROIMMUN IgA and IgG ELISAs. All NHS samples were negative, whereas 3.6% CHIKV, 21.7% primary DENV, 15.7% secondary DENV, and 10.8% febrile diseases sera resulted as anti-SARS-CoV-2 antibody positive. The EUROIMMUN ELISA using spike 1 as the antigen detected more positives among the primary DENV infections than the in-house ELISA using spike 1-receptor binding domain (RBD) protein. Among ELISA-positive samples, four had detectable neutralizing antibodies against SARS-CoV-2 reporter virus particles yet none had detectable neutralizing antibodies against the live Wuhan strain of SARS-CoV-2. These data demonstrated the SARS-CoV-2 diagnostic cross-reactivity, but not neutralizing antibody cross-reactivity, among dengue seropositive cases. IMPORTANCE SARS-CoV-2 continues to cause significant morbidity globally, including in areas where DENV and CHIKV are endemic. Reports using rapid diagnostic and ELISAs have demonstrated that serological cross-reactivity between DENV and SARS-CoV-2 can occur. Furthermore, it has been observed that convalescent DENV patients are at a lower risk of developing COVID-19. This phenomenon can interfere with the accuracy of serological testing and clinical management of both DENV and COVID-19 patients. In this study, the cross-reactivity of primary/secondary anti-DENV, CHIKV, and other febrile illness antibodies with SARS-CoV-2 using two ELISAs has been shown. Among ELISA-positive samples, four had detectable levels of neutralizing antibodies against SARS-CoV-2 reporter virus particles. However, none had detectable neutralizing antibodies against the live Wuhan strain of SARS-CoV-2. These data demonstrated SARS-CoV-2 diagnostic cross-reactivity, but not neutralizing antibody cross-reactivity, among dengue seropositive cases. The data discussed here provide information regarding diagnosis and may help guide appropriate public health interventions.
Assuntos
COVID-19 , Febre de Chikungunya , Vírus Chikungunya , Dengue , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Anticorpos Antivirais , Anticorpos Neutralizantes , Dengue/diagnósticoRESUMO
The coding-complete genome sequences of 22 chikungunya virus strains collected from the 2018-2019 outbreak in Thailand are reported. All sequences belong to the East/Central/South African (ECSA) genotype and contain two mutations, E1:K211E and E2:V264A, which were previously shown to be associated with increased viral infectivity, dissemination, and transmission in Aedes aegypti.