Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 21(8): 1313-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21636662

RESUMO

DNA methylation is a tightly regulated epigenetic mark associated with transcriptional repression. Next-generation sequencing of purified methylated DNA obtained from early Xenopus tropicalis embryos demonstrates that this genome is heavily methylated during blastula and gastrula stages. Although DNA methylation is largely absent from transcriptional start sites marked with histone H3 lysine 4 trimethylation (H3K4me3), we find both promoters and gene bodies of active genes robustly methylated. In contrast, DNA methylation is absent in large H3K27me3 domains, indicating that these two repression pathways have different roles. Comparison with chromatin state maps of human ES cells reveals strong conservation of epigenetic makeup and gene regulation between the two systems. Strikingly, genes that are highly expressed in pluripotent cells and in Xenopus embryos but not in differentiated cells exhibit relatively high DNA methylation. Therefore, we tested the repressive potential of DNA methylation using transient and transgenic approaches and show that methylated promoters are robustly transcribed in blastula- and gastrula-stage embryos, but not in oocytes or late embryos. These findings have implications for reprogramming and the epigenetic regulation of pluripotency and differentiation and suggest a relatively open, pliable chromatin state in early embryos followed by reestablished methylation-dependent transcriptional repression during organogenesis and differentiation.


Assuntos
DNA/metabolismo , Transcrição Gênica , Xenopus/embriologia , Animais , Diferenciação Celular , Cromatina/metabolismo , Metilação de DNA , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Xenopus/metabolismo
2.
Differentiation ; 81(2): 107-18, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20970242

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is a candidate gene for mediating FSHD pathophysiology, however, very little is known about the endogenous FRG1 protein. This study uses immunocytochemistry (ICC) and histology to provide insight into FRG1's role in vertebrate muscle development and address its potential involvement in FSHD pathophysiology. In cell culture, primary myoblast/myotube cultures, and mouse and human muscle sections, FRG1 showed distinct nuclear and cytoplasmic localizations and nuclear shuttling assays indicated the subcellular pools of FRG1 are linked. During myoblast differentiation, FRG1's subcellular distribution changed dramatically with FRG1 eventually associating with the matured Z-discs. This Z-disc localization was confirmed using isolated mouse myofibers and found to be maintained in adult human skeletal muscle biopsies. Thus, FRG1 is not likely involved in the initial assembly and alignment of the Z-disc but may be involved in sarcomere maintenance or signaling. Further analysis of human tissue showed FRG1 is strongly expressed in arteries, veins, and capillaries, the other prominently affected tissue in FSHD. Overall, we show that in mammalian cells, FRG1 is a dynamic nuclear and cytoplasmic protein, however in muscle, FRG1 is also a developmentally regulated sarcomeric protein suggesting FRG1 may perform a muscle-specific function. Thus, FRG1 is the only FSHD candidate protein linked to the muscle contractile machinery and may address why the musculature and vasculature are specifically susceptible in FSHD.


Assuntos
Núcleo Celular/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas Nucleares/metabolismo , Sarcômeros/metabolismo , Adulto , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Miofibrilas/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA
3.
Biosci Rep ; 31(5): 333-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21070191

RESUMO

Mutations in MECP2 (methyl-CpG-binding protein 2) are linked to the severe postnatal neurodevelopmental disorder RTT (Rett syndrome). MeCP2 was originally characterized as a transcriptional repressor that preferentially bound methylated DNA; however, recent results indicate MeCP2 is a multifunctional protein. MeCP2 binding is now associated with certain expressed genes and involved in nuclear organization as well, indicating that its gene regulatory function is context-dependent. In addition, MeCP2 is proposed to regulate mRNA splicing and a mouse model for RTT shows aberrant mRNA splicing. To further understand MeCP2 and potential roles in RTT pathogenesis, we have employed a biochemical approach to identify the MeCP2 protein complexes present in the mammalian brain. We show that MeCP2 exists in at least four biochemically distinct pools in the brain and characterize one novel brain-derived MeCP2 complex that contains the splicing factor Prpf3 (pre-mRNA processing factor 3). MeCP2 directly interacts with Prpf3 in vitro and in vivo and many MECP2 RTT truncations disrupt the MeCP2-Prpf3 complex. In addition, MeCP2 and Prpf3 associate in vivo with mRNAs from genes known to be expressed when their promoters are associated with MeCP2. These results support a role for MeCP2 in mRNA biogenesis and suggest an additional mechanism for RTT pathophysiology.


Assuntos
Encéfalo/enzimologia , Proteína 2 de Ligação a Metil-CpG/genética , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro/biossíntese , Animais , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Regiões Promotoras Genéticas/fisiologia , Multimerização Proteica/genética , Splicing de RNA/genética , Fatores de Processamento de RNA , Ratos , Síndrome de Rett/enzimologia , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo
4.
J Mol Biol ; 411(2): 397-416, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21699900

RESUMO

FSHD region gene 1 (FRG1) is a dynamic nuclear and cytoplasmic protein that, in skeletal muscle, shows additional localization to the sarcomere. Maintaining appropriate levels of FRG1 protein is critical for muscular and vascular development in vertebrates; however, its precise molecular function is unknown. This study investigates the molecular functions of human FRG1, along with mouse FRG1 and Xenopus frg1, using molecular, biochemical, and cellular-biological approaches, to provide further insight into its roles in vertebrate development. The nuclear fraction of the endogenous FRG1 is localized in nucleoli, Cajal bodies, and actively transcribed chromatin; however, contrary to overexpressed FRG1, the endogenous FRG1 is not associated with nuclear speckles. We characterize the nuclear and nucleolar import of FRG1, the potential effect of phosphorylation, and its interaction with the importin karyopherin α2. Consistent with a role in RNA biogenesis, human FRG1 is associated with mRNA in vivo and invitro, interacts directly with TAP (Tip-associated protein; the major mRNA export receptor), and is a dynamic nuclear-cytoplasmic shuttling protein supporting a function for FRG1 in mRNA transport. Biochemically, we characterize FRG1 actin binding activity and show that the cytoplasmic pool of FRG1 is dependent on an intact actin cytoskeleton for its localization. These data provide the first biochemical activities (actin binding and RNA binding) for human FRG1 and the characterization of the endogenous human FRG1, together indicating that FRG1 is involved in multiple aspects of RNA biogenesis, including mRNA transport and, potentially, cytoplasmic mRNA localization.


Assuntos
Actinas/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Nucléolo Celular/química , Núcleo Celular/química , Citoplasma/química , Humanos , Carioferinas/metabolismo , Camundongos , Proteínas dos Microfilamentos , Modelos Biológicos , Ligação Proteica , Proteínas/metabolismo , Proteínas de Ligação a RNA , Xenopus , Proteínas de Xenopus/metabolismo
5.
Int J Clin Exp Pathol ; 3(4): 386-400, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20490329

RESUMO

The genetic lesion leading to facioscapulohumeral muscular dystrophy (FSHD) is a dominant deletion at the 4q35 locus. The generally accepted disease model involves an epigenetic dysregulation in the region resulting in the upregulation of one or more proximal genes whose overexpression specifically affects skeletal muscle. However, multiple FSHD candidate genes have been proposed without clear consensus. Using Xenopus laevis as a model for vertebrate development our lab has studied the effects of overexpression of the FSHD candidate gene ortholog, frg1 (FSHD region gene 1), showing that increased levels of frg1 systemically led specifically to an abnormal musculature and increased angiogenesis, the two most prominent clinical features of FSHD. Here we studied the overexpression effects of three other promising FSHD candidate genes, DUX4, DUX4c, and PITX1 using the same model system and methods for direct comparison. Expression of even very low levels of either DUX4 or pitx1 early in development led to massive cellular loss and severely abnormal development. These abnormalities were not muscle specific. In contrast, elevated levels of DUX4c resulted in no detectable adverse affects on muscle and DUX4c levels did not alter the expression of myogenic regulators. This data supports a model for DUX4 and PITX1 in FSHD only as pro-apoptotic factors if their expression in FSHD is confined to cells within the myogenic pathway; neither could account for the vascular pathology prevalent in FSHD. Taken together, increased frg1 expression alone leads to a phenotype that most closely resembles the pathophysiology observed in FSHD patients.


Assuntos
Proteínas de Homeodomínio/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Distrofia Muscular Facioescapuloumeral/genética , Fatores de Transcrição Box Pareados/genética , Animais , Apoptose/fisiologia , Diferenciação Celular , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Músculo Esquelético/citologia , Músculos , Distrofia Muscular Facioescapuloumeral/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
6.
Mol Microbiol ; 52(6): 1567-77, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15186409

RESUMO

SMC (structural maintenance of chromosomes) proteins are highly conserved and present in eukaryotes, bacteria and archaea. They function in chromosome condensation and segregation and in DNA repair. Using an insertion vector containing the pac gene for resistance to puromycin, we have created an insertion in the smc gene of Methanococcus voltae. We used epifluorescence microscopy to examine the cell and nucleoid morphology, DNA content and metabolic activity. This insertion causes gross defects in chromosome segregation and cell morphology. Approximately 20% of mutant cells contain little or no DNA, and a subset of cells ( approximately 2%) IS abnormally large (three to four times their normal diameter) titan cells. We believe that these titan cells indicate cell division arrest at a cell cycle checkpoint. The results confirm that SMC in archaea is an important player in chromosome dynamics (as it is in bacteria and eukaryotes).


Assuntos
Proteínas Arqueais/genética , Proteínas Arqueais/fisiologia , Cromossomos de Archaea/ultraestrutura , Genes Arqueais , Mathanococcus/citologia , Mathanococcus/genética , Divisão Celular , DNA Arqueal/química , DNA Arqueal/isolamento & purificação , Mathanococcus/crescimento & desenvolvimento , Mathanococcus/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Análise de Sequência de DNA , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA