Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Educ Technol Res Dev ; : 1-21, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37359487

RESUMO

Notwithstanding the advantages of incorporating Augmented Reality (AR) in education, AR's concrete uses as compared to other technologies are not fully recognised. Moreover, many of the existing studies have neglected to examine the impact of pedagogy and its corresponding instructional models, whilst implementing AR in teaching and learning. In leveraging the affordances of AR, an inquiry-based learning framework, referred to as QIMS, was proposed in this study. A learning package was developed on the topic of plant reproduction for primary 5 students (aged 11-12) based on the QIMS framework. Using a quasi-experimental approach, this study evaluated three conditions (AR and QIMS; QIMS; Non-AR and Non-QIMS) for a series of science lessons in a primary school. 117 students took part in this study. The quantitative results showed that although there was no statistically significant difference in students' academic performance when AR was used, students' self-directed learning and creative thinking skills increased significantly after partaking in the QIMS inquiry-based lessons. The usage of AR and QIMS had a significant effect in increasing students' critical thinking and knowledge creation efficacy skills. Moreover, in view of students' academic outcomes, the integration of QIMS and AR proved to be more beneficial to low-progress students. Qualitative analysis of the interview data from teachers and students aids in accounting for the quantitative results and indicate productive implementation strategies. The findings of this study will guide the design of future AR interventions, by providing insights for both researchers and practitioners on how to integrate and implement AR with pedagogical approaches.

3.
Front Psychol ; 13: 888215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686069

RESUMO

Using educational robots (ERs) to integrate computational thinking (CT) with cross-disciplinary content has gone beyond Science, Technology, Engineering, and Mathematics (STEM), to include foreign-language learning (FL) and further cross-context target-language (TL) acquisition. Such integration must not solely emphasise CT problem-solving skills. Rather, it must provide students with interactive learning to support their target-language (TL) interaction while reducing potential TL anxiety. This study aimed to validate the effects of the proposed method of pair programming (PP) along with question-and-response interaction in a board-game activity on young learners' CT skills and TL learning across contexts. Two Grade 6 classes, one with 15 students who were studying Chinese as a Second Language (CSL) and the other with 15 students who were studying English as a Foreign Language (EFL), participated in the activity. A series of instruments on achievement assessment, questionnaires on CT skills and TL anxiety, and sequential learning behaviour analysis were used to critically examine the results. The main conclusion is that the EFL group showed better social skills of cooperation on CT and lower TL learning anxiety, while the CSL group demonstrated better problem-solving skills in CT, but presented more behaviours of trial-and-error loops. Results not only contribute suggestions for cross-disciplinary learning but also provide support for cross-context instruction beyond educational coursework.

5.
Heliyon ; 7(9): e07922, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34527824

RESUMO

Despite the increasing presence of computational thinking (CT) in the mathematics context, the connection between CT and mathematics in a practical classroom context is an important area for further research. This study intends to investigate the impact of CT activities in the topic of number patterns on the learning performance of secondary students in Singapore. The Rasch model analysis was employed to assess differences of ability between students from the experimental group and control group. 106 Secondary One students (age 13 years old) from a secondary school in Singapore took part in this study. A quasi-experimental non-equivalent groups design was utilized where 70 students were assigned into the experimental group, and 36 students were assigned into the control group. The experimental group was given intervention with CT-infused activities both on- and off-computer, while the control group received no such intervention. Both groups were administered the pretest before the intervention and the posttest after the intervention. The data gathered were analyzed using the partial credit version of the Rasch model. Analysis of pretest and posttest results revealed that the performance of the experimental group was similar to the control group. The findings did not support the hypothesis that integrating CT in lessons can result in improved mathematics learning. However, the drastic improvement was observed in individual students from the experimental group, while there is no obvious or extreme improvement for the students from the control group. This study provides some new empirical evidence and practical contributions to the infusion of CT practices in the mathematics classroom.

6.
Front Psychol ; 12: 759181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912272

RESUMO

The current study set out to understand the factors that explain working adults' microlearning usage intentions using the Decomposed Theory of Planned Behaviour (DTPB). Specifically, the authors were interested in differences, if any, in the factors that explained microlearning acceptance across gender, age and proficiency in technology. 628 working adults gave their responses to a 46-item, self-rated, 5-point Likert scale developed to measure 12 constructs of the DTPB model. Results of this study revealed that a 12-factor model was valid in explaining microlearning usage intentions of all working adults, regardless of demographic differences. Tests for measurement invariance showed support for invariance in model structure (configural invariance), factor loadings (metric invariance), item intercepts (scalar invariance), and item residuals (strict invariance) between males and females, between working adults below 40 years and above 40 years, and between working adults with lower technology proficiency and higher technology proficiency levels. While measurement invariance existed in the data, structural invariance was only found across gender, not age and technology proficiency. We then assessed latent mean differences and structural path differences across groups. Our findings suggest that a tailored approach to encourage the use of microlearning is needed to suit different demographics of working adults. The current study discusses the implications of the findings on the use and adoption of microlearning and proposes future research possibilities.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30613252

RESUMO

The research on mobile learning in science lacks in-depth investigation of the learning process. In this paper, we describe the implementation of a mobile technology-supported science curriculum developed by design-based approach. The long-term data collection and trace of learning process enable the exploration of students' participation and identifying potential factors in mobile learning. Employing mixed research methods, the study presents the differences of students' engagement in mobile activity. It was found out that the participation of students in doing the mobile activities varied regarding the types of mobile tools, topics, class levels, and teacher feedback. The findings unfolded the factors affecting student activity participation behavior in mobile science learning and the problems encountered by the mobile science curriculum implementation. The results could potentially inform curriculum design and implementation supported by mobile technology, as well as support professional development of science teachers.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30595731

RESUMO

Appropriate design of collaborative learning activities for students using mobile devices can be supported by different forms of scaffolding provided by peers, by the teacher or by the technology. Building on prior studies in mCSCL (mobile computer-supported collaborative learning), we developed Chinese-PP, a novel in-class mobile synchronous collaborative learning game for constructing Chinese characters from components, with the unique characteristic of spontaneous small group formations. In this paper, we propose a distributed scaffolding design framework to guide us in examining and refining/revising the interplay among various forms of scaffolding in the learning model across various design-based research (DBR) cycles of our study on Chinese-PP in a primary school in Singapore. We believe a generalized scaffolding design framework has the potential to inform technology-enhanced learning research with a structure to support the iterative process of enacting and redesigning the socio-techno-pedagogical frameworks developed by individual research projects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA