RESUMO
Asthma is a heterogeneous inflammatory disease of the airways that causes breathing difficulties, episodes of cough and wheezing, and in more severe cases can greatly diminish quality of life. Epigenetic regulation, including post-transcriptional mediation of microRNAs (miRNAs), is one of the mechanisms behind the development of the range of asthma phenotypes and endotypes. As in every other immune-mediated disease, miRNAs regulate the behavior of cells that shape the airway structure as well as those in charge of the defense mechanisms in the bronchi and lungs, controlling cell survival, growth, proliferation, and the ability of cells to synthesize and secrete chemokines and immune mediators. More importantly, miRNAs are molecules with chemical and biological properties that make them appropriate biomarkers for disease, enabling stratification of patients for optimal drug selection and thereby simplifying clinical management and reducing both the economic burden and need for critical care associated with the disease. In this review, we summarize the roles of miRNAs in asthma and describe how they regulate the mechanisms of the disease. We further describe the current state of miRNAs as biomarkers for asthma phenotyping, endotyping, and treatment selection.
Assuntos
Asma , MicroRNAs , Humanos , MicroRNAs/genética , Epigênese Genética , Qualidade de Vida , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , BiomarcadoresRESUMO
Clarifying inflammatory processes and categorising asthma into phenotypes and endotypes improves asthma management. Obesity worsens severe asthma and reduces quality of life, although its specific molecular impact remains unclear. We previously demonstrated that hsa-miR-26a-1-3p and hsa-miR-376a-3p, biomarkers related to an inflammatory profile, discriminate eosinophilic from non-eosinophilic asthmatics. We aimed to study hsa-miR-26a-1-3p, hsa-miR-376a-3p, and their target genes in asthmatic subjects with or without obesity to find biomarkers and comprehend obese asthma mechanisms. Lung tissue samples were obtained from asthmatic patients (n = 16) and healthy subjects (n = 20). We measured miRNA expression using RT-qPCR and protein levels (IGF axis) by ELISA in confirmation samples from eosinophilic (n = 38) and non-eosinophilic (n = 39) obese (n = 26) and non-obese (n = 51) asthma patients. Asthmatic lungs showed higher hsa-miR-26a-1-3p and hsa-miR-376a-3p expression than healthy lungs. A study of seven genes regulated by these miRNAs revealed differential expression of IGFBP3 between asthma patients and healthy individuals. In obese asthma patients, we found higher hsa-miR-26a-1-3p and IGF-1R values and lower values for hsa-miR-376a-3p and IGFBP-3. Hsa-miR-26a-1-3p and IGFBP-3 were directly and inversely correlated with body mass index, respectively. Hsa-miR-26a-1-3p and hsa-miR-376a-3p could be used as biomarkers to phenotype patients with eosinophilic and non-eosinophilic asthma in relation to comorbid obesity.
Assuntos
Asma , MicroRNAs , Obesidade , Humanos , Asma/complicações , Asma/genética , Biomarcadores , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Fenótipo , Qualidade de VidaRESUMO
Nowadays, microRNAs (miRNAs) are increasingly used as biomarkers due to their potential contribution to the diagnosis and targeted treatment of a range of diseases. The aim of the study was to analyze the miRNA expression profiles in serum and lung tissue from patients with severe asthma treated with oral corticosteroids (OCS) and those without OCS treatment. For this purpose, serum and lung tissue miRNAs of OCS and non-OCS asthmatic individuals were evaluated by miRNAs-Seq, and subsequently miRNA validation was performed using RT-qPCR. Additionally, pathway enrichment analysis of deregulated miRNAs was conducted. We observed altered expression by the next-generation sequencing (NGS) of 11 miRNAs in serum, of which five (hsa-miR-148b-3p, hsa-miR-221-5p, hsa-miR-618, hsa-miR-941, and hsa-miR-769-5p) were validated by RT-qPCR, and three miRNAs in lung tissue (hsa-miR-144-3p, hsa-miR-144-5p, and hsa-miR-451a). The best multivariate logistic regression model to differentiate individuals with severe asthma, treated and untreated with OCS, was to combine the serum miRNAs hsa-miR-221-5p and hsa-miR-769-5p. Expression of hsa-miR-148b-3p and hsa-miR-221-5p correlated with FEV1/FVC (%) and these altered miRNAs act in key signaling pathways for asthma disease and the regulated expression of some genes (FOXO3, PTEN, and MAPK3) involved in these pathways. In conclusion, there are miRNA profiles differentially expressed in OCS-treated individuals with asthma and could be used as biomarkers of OCS treatment.
Assuntos
Asma , MicroRNAs , Humanos , Glucocorticoides/uso terapêutico , MicroRNAs/metabolismo , Pulmão/metabolismo , Biomarcadores , Asma/tratamento farmacológico , Asma/genéticaAssuntos
Anticorpos Monoclonais Humanizados , Basófilos , Degranulação Celular , Humanos , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Basófilos/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Degranulação Celular/efeitos dos fármacos , Contagem de LeucócitosRESUMO
(1) Background: Eosinophilia has traditionally been linked to eosinophilic asthma, for which it is the gold-standard prognostic biomarker. However, the association between eosinophilia and the presence of other diseases and comorbidities is yet unclear. (2) Methods: For this retrospective study, we reviewed the electronic medical records of 49,909 subjects with blood eosinophilia to gather data on the presence of asthma, COPD, sleep apnea, tuberculosis, dyslipidemia, hypertension, and other cardiovascular diseases and severe CRSwNP among these subjects. Demographic features including age, sex, and smoking habits were collected, as well as the number of hospitalizations and emergency department visits. T-tests, ANOVA, Fisher test, and logistic regression models were used. (3) Results: For all age groups studied, eosinophilia was significantly more prevalent among asthmatic subjects than nonasthmatics, especially in patients also presenting CRSwNP, hypertension, and dyslipidemia. The likelihood of developing asthma, COPD, and CRSwNP, and hospitalization, was increased when BEC was above 600 eosinophils/µL. The association between asthma, CRSwNP, and BEC was corroborated by multiple logistic regressions models. (4) Conclusions: We demonstrated the association of having over 600 blood eosinophils/µL with a higher number of hospitalizations and comorbidities (CRSwNP and COPD), which proves that BEC is a highly useful parameter to consider in subjects who present blood eosinophilia.
Assuntos
Asma , Dislipidemias , Hipertensão , Mustelidae , Doença Pulmonar Obstrutiva Crônica , Eosinofilia Pulmonar , Humanos , Animais , Estudos Retrospectivos , Asma/complicações , Asma/epidemiologia , Hospitalização , Dislipidemias/epidemiologia , Doença Pulmonar Obstrutiva Crônica/epidemiologiaRESUMO
Respiratory diseases such as bronchiolitis, and those with wheezing episodes, are highly important during infancy due to their potential chronicity. Immune response dysregulation is critical in perpetuating lung damage. Epigenetic modifications including microRNA (miRNA) post-transcriptional regulation are among the factors involved in alleviating inflammation. We evaluated the expression of miR-146a-5p, a previously described negative regulator of immunity, in infants with respiratory diseases, in order to study epigenetic regulation of the immune response. Nasopharyngeal aspirate (NPA) was obtained from infants with bronchiolitis (ongoing and post-disease) or with wheezing episodes in addition to healthy controls. Virus presence was determined by nested PCR, while miRNA and gene expression were studied in cells from NPAs using qPCR. Healthy small airway epithelial cells (SAECs) were used as an in vitro model. We observe a reduction in miR-146a-5p expression in infants with either of the two diseases compared to controls, suggesting the potential of this miRNA as a disease biomarker. Post-bronchiolitis, miR-146a-5p expression increases, though without reaching levels of healthy controls. MiR-146a-5p expression correlates inversely with the immune-related gene PTGS2, while its expression correlates directly with TSLP. When heathy donor SAECs are stimulated by poly:IC, we observe an increase in miR-146a-5p, with wounds having a synergistic effect. In conclusion, infants with respiratory diseases present reduced miR-146a-5p expression, possibly affecting immune dysregulation.
Assuntos
Bronquiolite , Epigênese Genética , MicroRNAs , Biomarcadores/metabolismo , Bronquiolite/diagnóstico , Bronquiolite/metabolismo , Ciclo-Oxigenase 2 , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/metabolismo , Sons RespiratóriosRESUMO
MicroRNAs are non-coding molecules that act both as regulators of the epigenetic landscape and as biomarkers for diseases, including asthma. In the era of personalized medicine, there is a need for novel disease-associated biomarkers that can help in classifying diseases into phenotypes for treatment selection. Currently, severe eosinophilic asthma is one of the most widely studied phenotypes in clinical practice, as many patients require higher and higher doses of corticosteroids, which in some cases fail to achieve the desired outcome. Such patients may only benefit from alternative drugs such as biologics, for which novel biomarkers are necessary. The objective of the study was to study the expression of miR-144-3p in order to discover its possible use as a diagnostic biomarker for severe asthma. For this purpose, miR-144-3p was evaluated in airway biopsies and serum from asthmatics and healthy individuals. mRNA was studied in asthmatic biopsies and smooth muscle cells transfected with miR-144-3p mimic. An in silico regulation of miR-144-3p was performed using miRSystem, miRDB, STRING, and ShinyGO for pathway analysis. From our experimental procedures, we found that miR-144-3p is a biomarker associated with asthma severity and corticosteroid treatment. MiR-144-3p is increased in asthmatic lungs, and its presence correlates directly with blood eosinophilia and with the expression of genes involved in asthma pathophysiology in the airways. When studied in serum, this miRNA was increased in severe asthmatics and associated with higher doses of corticosteroids, thereby making it a potential biomarker for severe asthma previously treated with higher doses of corticosteroids. Thus, we can conclude that miR-144-3p is associated with severe diseases in both the airways and serum of asthmatics, and this association is related to corticosteroid treatment.
Assuntos
Asma , Eosinofilia , MicroRNAs , Corticosteroides/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , Biomarcadores , Humanos , MicroRNAs/metabolismoRESUMO
Respiratory viral infections (RVIs) are frequent in preterm infants possibly inducing long-term impact on respiratory morbidity. Immune response and respiratory barriers are key defense elements against viral insults in premature infants admitted to Neonatal Intensive Care Units (NICUs). Our main goals were to describe the local immune response in respiratory secretions of preterm infants with RVIs during NICU admission and to evaluate the expression and synthesis of lung barrier regulators, both in respiratory samples and in vitro models. Samples from preterm infants that went on to develop RVIs had lower filaggrin gene and protein levels at a cellular level were compared to never-infected neonates (controls). Filaggrin, MIP-1α/CCL3 and MCP-1 levels were higher in pre-infection supernatants compared to controls. Filaggrin, HIF-1α, VEGF, RANTES/CCL5, IL-17A, IL-1ß, MIP-1α and MIP-1ß/CCL5 levels were higher during and after infection. ROC curve and logistic regression analysis shows that these molecules could be used as infection risk biomarkers. Small airway epithelial cells stimulated by poly:IC presented reduced filaggrin gene expression and increased levels in supernatant. We conclude that filaggrin gene and protein dysregulation is a risk factor of RVI in newborns admitted at the NICU.
Assuntos
Citocinas , Proteínas Filagrinas , Doenças Respiratórias , Viroses , Humanos , Recém-Nascido , Citocinas/metabolismo , Recém-Nascido Prematuro , Viroses/metabolismo , Proteínas Filagrinas/metabolismo , Doenças Respiratórias/virologia , Unidades de Terapia Intensiva NeonatalRESUMO
Microbial challenges, such as widespread bacterial infection in sepsis, induce endotoxin tolerance, a state of hyporesponsiveness to subsequent infections. The participation of DNA methylation in this process is poorly known. In this study, we perform integrated analysis of DNA methylation and transcriptional changes following in vitro exposure to gram-negative bacterial lipopolysaccharide, together with analysis of ex vivo monocytes from septic patients. We identify TET2-mediated demethylation and transcriptional activation of inflammation-related genes that is specific to toll-like receptor stimulation. Changes also involve phosphorylation of STAT1, STAT3 and STAT5, elements of the JAK2 pathway. JAK2 pathway inhibition impairs the activation of tolerized genes on the first encounter with lipopolysaccharide. We then confirm the implication of the JAK2-STAT pathway in the aberrant DNA methylome of patients with sepsis caused by gram-negative bacteria. Finally, JAK2 inhibition in monocytes partially recapitulates the expression changes produced in the immunosuppressive cellular state acquired by monocytes from gram-negative sepsis, as described by single cell-RNA-sequencing. Our study evidences both the crucial role the JAK2-STAT pathway in epigenetic regulation and initial response of the tolerized genes to gram-negative bacterial endotoxins and provides a pharmacological target to prevent exacerbated responses.
Assuntos
Tolerância à Endotoxina/genética , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Sepse/genética , Sepse/imunologia , Estudos de Casos e Controles , Metilação de DNA/genética , Metilação de DNA/imunologia , Tolerância à Endotoxina/efeitos dos fármacos , Tolerância à Endotoxina/imunologia , Endotoxinas/toxicidade , Epigênese Genética , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Técnicas In Vitro , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Lipopolissacarídeos/toxicidade , Masculino , Monócitos/efeitos dos fármacos , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Sepse/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologiaRESUMO
BACKGROUND: Sepsis, a life-threatening organ dysfunction caused by a dysregulated systemic immune response to infection, associates with reduced responsiveness to subsequent infections. How such tolerance is acquired is not well understood but is known to involve epigenetic and transcriptional dysregulation. METHODS: Bead arrays were used to compare global DNA methylation changes in patients with sepsis, non-infectious systemic inflammatory response syndrome, and healthy controls. Bioinformatic analyses were performed to dissect functional reprogramming and signaling pathways related to the acquisition of these specific DNA methylation alterations. Finally, in vitro experiments using human monocytes were performed to test the induction of similar DNA methylation reprogramming. RESULTS: Here, we focused on DNA methylation changes associated with sepsis, given their potential role in stabilizing altered phenotypes. Tolerized monocytes from patients with sepsis display changes in their DNA methylomes with respect to those from healthy controls, affecting critical monocyte-related genes. DNA methylation profiles correlate with IL-10 and IL-6 levels, significantly increased in monocytes in sepsis, as well as with the Sequential Organ Failure Assessment score; the observed changes associate with TFs and pathways downstream to toll-like receptors and inflammatory cytokines. In fact, in vitro stimulation of toll-like receptors in monocytes results in similar gains and losses of methylation together with the acquisition of tolerance. CONCLUSION: We have identified a DNA methylation signature associated with sepsis that is downstream to the response of monocytes to inflammatory signals associated with the acquisition of a tolerized phenotype and organic dysfunction.