Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(12): 10179-10192, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38132481

RESUMO

Oxidative stress is known to influence mRNA levels, translation, and proteolysis. The importance of oxidative stress has been demonstrated in several human diseases, including neurodegenerative disorders. L-Dopa decarboxylase (DDC) is the enzyme that converts L-Dopa to dopamine (DA). In spite of a large number of studies, little is known about the biological significance of the enzyme under physiological and pathological conditions. Here, we investigated the relationship between DDC expression and oxidative stress in human neural and non-neural cells. Oxidative stress was induced by treatment with H2O2. Our data indicated that mRNA and protein expression of DDC was enhanced or remained stable under conditions of ROS induction, despite degradation of total RNA and increased cytotoxicity and apoptosis. Moreover, DDC silencing caused an increase in the H2O2-induced cytotoxicity. The current study suggests that DDC is involved in the mechanisms of oxidative stress.

2.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203657

RESUMO

Sepsis is an inflammatory disorder caused by the host's dysfunctional response to infection. Septic patients present diverse clinical characteristics, and in the recent years, it has been the main cause of death in intensive care units (ICU). Aquaporins, membrane proteins with a role in water transportation, have been reported to participate in numerous biological processes. Their role in sepsis progression has been studied extensively. This review aims to examine recent literature on aquaporin expression and regulation in clinical sepsis, as well as established experimental models of sepsis. We will present how sepsis affects aquaporin expression at the molecular and protein level. Moreover, we will delve into the importance of aquaporin regulation at transcriptional, post-transcriptional, translational, and post-translational levels in sepsis by presenting data on aquaporin regulation by non-coding RNAs and selected chemical molecules. Finally, we will focus on the importance of aquaporin single-nucleotide polymorphisms in the setting of sepsis.


Assuntos
Aquaporinas , Sepse , Humanos , Sepse/genética , Aquaporinas/genética , Unidades de Terapia Intensiva , Proteínas de Membrana , Polimorfismo de Nucleotídeo Único
3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142499

RESUMO

Aquaporin-1 (AQP1), a water channel, and the hypoxia-inducible factor 1α (HIF1A) are implicated in acute lung injury responses, modulating among others pulmonary vascular leakage. We hypothesized that the AQP1 and HIF1A systems interact, affecting mRNA, protein levels and function of AQP1 in human pulmonary microvascular endothelial cells (HPMECs) exposed to lipopolysaccharide (LPS). Moreover, the role of AQP1 in apoptosis and wound healing progression was examined. Both AQP1 mRNA and protein expression levels were higher in HPMECs exposed to LPS compared to untreated HPMECs. However, in the LPS-exposed HIF1A-silenced cells, the mRNA and protein expression levels of AQP1 remained unaltered. In the permeability experiments, a statistically significant volume increase was observed at the 360 s time-point in the LPS-exposed HPMECs, while LPS-exposed HIF1A-silenced HPMECs did not exhibit cell swelling, implying a dysfunctional AQP1. AQP1 did not seem to affect cell apoptosis yet could interfere with endothelial migration and/or proliferation. Based on our results, it seems that HIF1A silencing negatively affects AQP1 mRNA and protein expression, as well as AQP1 function, in the setting of lung injury.


Assuntos
Aquaporina 1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipopolissacarídeos , Lesão Pulmonar , Células Endoteliais/metabolismo , Humanos , Hipóxia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , RNA Mensageiro/genética
4.
Med Sci (Basel) ; 11(2)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367740

RESUMO

Hypoxia is characterized as one of the main consequences of sepsis, which is recognized as the leading cause of death in intensive care unit (ICU) patients. In this study, we aimed to examine whether the expression levels of genes regulated under hypoxia could be utilized as novel biomarkers for sepsis prognosis in ICU patients. Whole blood expression levels of hypoxia-inducible factor-1α (HIF1A), interferon-stimulated gene 15 (ISG15), hexokinase 2 (HK2), lactate dehydrogenase (LDHA), heme oxygenase-1 (HMOX1), erythropoietin (EPO), and the vascular endothelial growth factor A (VEGFA) were measured on ICU admission in 46 critically ill, initially non-septic patients. The patients were subsequently divided into two groups, based on the development of sepsis and septic shock (n = 25) or lack thereof (n = 21). HMOX1 mRNA expression was increased in patients who developed sepsis/septic shock compared to the non-septic group (p < 0.0001). The ROC curve, multivariate logistic regression, and Kaplan-Meier analysis demonstrated that HMOX1 expression could be utilized for sepsis and septic shock development probability. Overall, our results indicate that HMOX1 mRNA levels have the potential to be a valuable predictive factor for the prognosis of sepsis and septic shock in ICU patients.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/diagnóstico , Choque Séptico/genética , Prognóstico , Fator A de Crescimento do Endotélio Vascular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Unidades de Terapia Intensiva , Sepse/diagnóstico , Sepse/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA