Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(1): 159-172, 2024 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-38216468

RESUMO

Phosphorus (P) is a pollutant of great concern in the Yangtze River Basin. The Xiangjiaba Reservoir and Xiluodu Reservoir on the lower reach of the Jinsha River began to operate in 2012 and 2013, respectively, which greatly changed the concentrations of suspended sediment and characteristics of P form and transport in the reservoirs and the downstream reach from Yibin to Jiangjin of the Yangtze River. The Zhutuo section is representative in the water quality of the Yibin-Jiangjin reach, which can not only reflect the comprehensive effects of the formation of the two reservoirs and changes in the aquatic environment in the Min-Tuo Rivers but also reflect the quality of water flowing into the Three Gorges Reservoir. The runoff, concentrations and fluxes of suspended sediments (SS), and P concentrations and fluxes at Zhutuo section were studied during 2002-2019, and the source of P was apportioned based on the principle of river base flow. The results showed that in the past 18 years, the concentrations and fluxes of total phosphorus (TP) and particulate phosphorus (PP) at Zhutuo section in the wet season were higher than those in the level and dry seasons; the rule of positive correlation between PP and SS concentrations remained unchanged. From 2002 to 2019, the concentrations and fluxes of TP, PP, and dissolved P (DP) generally increased first and then decreased, and the operation of the Xiangjiaba Reservoir was a time node for the trend turning. Compared with that in the period from 2002-2012, the SS concentration and flux decreased by 94% and 77%, TP and PP concentrations decreased by 46% and 70%, and TP and PP fluxes decreased by 58% and 74%, respectively, during 2014-2019. The decline mainly occurred in the wet season, followed by that in the level season. After the formation of the two reservoirs, the relationship between water and sediment and the form of P greatly changed, and the proportion of DP in TP increased significantly, whereas the proportion of PP was the opposite. The TP pool in overlying water in the dry and level seasons shifted from mainly particulate to mainly dissolved. The change in water and sediment conditions was the main driving force for the significant change in P concentration, flux, and form. Before the operation of the Xiangjiaba Reservoir, the Jinsha River was the maximum contributor to the whole and diffuse source part of the TP load at Zhutuo section among the contributing catchment sub-basins; however, the Minjiang River became the largest contributor after the operation. The average TP load at Zhutuo section from 2017-2019 was 3.575×104 t·a-1 (after deducting the natural background value), of which the contribution of diffuse sources and point sources accounted for 68% and 32%, respectively. The Minjiang River represented 49%, 43%, and 62% of the total TP load, diffuse source TP load, and point source TP load at Zhutuo section, respectively. Considering the load contribution and pollution intensity, the key area for P pollution control in the area upstream of the Three Gorges Reservoir was the Min-Tuo River Basin.

2.
Huan Jing Ke Xue ; 44(4): 2022-2031, 2023 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-37040952

RESUMO

Hanjiang River is closely related to the middle route of the South-to-North Water Diversion Project, the Water Diversion Project from the Hanjiang River to the Wei River, and the Water Diversion Project in Northern Hubei. The Wuhan Hanjiang River water source is one of the important drinking water sources in China; its water quality safety is significant to living and production for millions of residents in Wuhan. Based on data from 2004 to 2021, the water quality variation trend and risk of Wuhan Hanjiang River water source were studied. The results showed that a certain gap existed between the concentrations of some pollutants such as total phosphorus, permanganate index, ammonia nitrogen, and correspondent water quality target, especially for the total phosphorus. The growth of algae in the water source was marginally limited by the concentrations of nitrogen, phosphorus, and silicon. When other factors remained unchanged, diatoms tended to grow rapidly when the water temperature was appropriate (6-12℃). The quality of water upstream had a great impact on the water quality of the Hanjiang water source. There may have been pollutants entering into the reach during the West Lake Water Plant and Zongguan Water Plant. There were differences in the temporal and spatial variation trend of concentrations between permanganate index, total nitrogen, total phosphorus, and ammonia nitrogen. Significant changes in the ratio of nitrogen and phosphorus in the water body will affect the population structure and quantity of planktonic algae and ultimately affect the safety of water quality. The water body in the water source area was generally in the state of medium nutrition to mild eutrophication, and middle eutrophication may have occurred in a few periods. In recent years, the nutritional level of the water source has been on the decline. It is necessary to make an in-depth investigation on the source, quantity, and change trend of pollutants in water sources in order to eliminate potential risks.


Assuntos
Poluentes Ambientais , Qualidade da Água , Rios/química , Monitoramento Ambiental/métodos , Amônia/análise , Fósforo/análise , Nitrogênio/análise , Poluentes Ambientais/análise , Medição de Risco
3.
Huan Jing Ke Xue ; 41(12): 5371-5380, 2020 Dec 08.
Artigo em Zh | MEDLINE | ID: mdl-33374053

RESUMO

After the completion of the Three Gorges Reservoir and the upstream reservoir group of the Yangtze River, new water and sediment conditions appeared in the middle and lower reaches of the Yangtze River, and its influence on the phosphorus concentrations in water has attracted much attention. Therefore, the spatial and temporal distributions of total phosphorus (TP) concentrations in the middle and lower reaches of the mainstem under the new water and sediment conditions were studied. The results show that:① after the construction of the Three Gorges Reservoir, the concentrations of TCP (samples were allowed to settle for 30 min) in the middle and lower reaches of the Yangtze River fluctuates between 0.10 and 0.15 mg·L-1, and generally increased during 2004-2010 and then decreased during 2014-2019, and increases along the flow direction. The concentrations of dissolved total phosphorus (TDP) have slowly increased with time. ② The settleable solids influence the phosphorus content to varying degrees. The median values of TCP/TP ratio in Nanjinguan, Hankou, and 23 km below Wusongkou, are 0.900, 0.720, and 0.609, respectively, which decreases successively from upstream to downstream. The proportion of TPP (total particulate phosphorus)/TP shows an increasing trend along the flow direction. The median values of TPP/TP ratios in Nanjinguan, Hankou, and 23 km below Wusongkou were 0.439, 0.567, and 0.738, respectively. ③ According to the "Environmental quality standard for surface water GB 3838-2002", the water quality was assessed using TCP concentrations, and the assessment results showed that the water quality of the middle and lower reaches of the Yangtze River was generally good. However, considering the influence of settleable solids, the water quality categories assessed based on TP concentrations would be worse, especially near estuaries. ④ In the middle and lower reaches of Yangtze River, there is little difference in the phosphorus concentration of different monitoring sites in the upper section of main stream; however, the difference is obvious near the estuary. ⑤ The concentration of TCP in the coastal waters of the urban river section of the middle and lower reaches of the Yangtze River is significantly higher than that of the main channel, and there are obvious coastal pollution zones in the coastal waters of the urban river section.

4.
J Environ Sci (China) ; 16(4): 559-63, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15495956

RESUMO

Preliminary research was conducted about how to incorporate sorption/desorption of organic pollutants with suspended solids and sediments into single-chemical and one-dimensional water quality model of Jinghang Canal. Sedimentation-resuspension coefficient k3 was deduced; characteristics of organic pollutants, concentrations and components of suspended solids/sediments and hydrological and hydraulic conditions were integrated into k3 and further into river water quality model; impact of sorption/desorption of organic pollutants with suspended solids and sediments on prediction function of the model was discussed. Results demonstrated that this impact is pronounced for organic pollutants with relatively large Koc and Kow, especially when they are also conservative and f.o of river suspended solids/sediments is high, and that incorporation of sorption/desorption of organic pollutants into river water quality model can improve its prediction accuracy.


Assuntos
Modelos Teóricos , Rios , Poluentes Químicos da Água/análise , Adsorção , Cinética , Compostos Orgânicos , Controle de Qualidade , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA